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1 Introduction

1.1 Galois group actions
Lecture 1, 10.10.2024

Let L/K be a Galois extension and G = Gal(L/K) its Galois group. The Galois
group G acts on L via field automorphisms:

• Action on the field extension L: For Q(
√

2) its Galois group Gal(Q(
√

2)/Q)

acts either by identity or by sending
√

2 to −
√

2.

• Action on the dual of the field extension L∗: For Q(
√

2)∗ its Galois group
acts on f (x1, x2) = x1 · 1 + x2 ·

√
2 either by identity or by sending f to

f ′ = x1 · 1 − x2 ·
√

2.

• Action on the group of nth roots of unity µn(L):

– In Q(
√

2), the nth roots of unity consist of {−1, 1} if n is even and {1} if n
is odd. Both automorphisms in Gal(Q(

√
2)/Q) leave µn(Q) fixed, so this

tells us that they all belong to the base field (are rational, in this case).

– A more interesting example is the nth cyclotomic field Q(ζn).In this field
µn(Q(ζn)) = ⟨ζn⟩, the cyclic group generated by ζn. The Galois group
Gal(Q(ζn)/Q) is isomorphic to (Z/nZ)∗. For n = 5 (prime), the Galois
group is cyclic and consists of {1, ζ5, ζ2

5, ζ3
5, ζ4

5}. The action of the Galois
group then permutes the 5th roots of unity. For n = 8, the Galois group
Gal(Q(ζ8)/Q) is isomorphic to (Z/8Z)∗ = {1, 3, 5, 7} and is cyclic of
order 4. The basis of Q(ζ8) over Q is given by {1, ζ8, ζ2

8, ζ3
8}. The actions is

given as: σ1 acts trivially, σ3 maps ζ8 to ζ3
8, σ5 acts by multiplication by −1

and σ7 maps ζ8 to ζ7
8.

• Action on the cyclic group (Z/nZ)∗: same as above.

• Action on a finite abelian group M: trivial action.

• Action on the general linear group GLn(L) over a field L of characteristic
0: GLn(L) consists of n × n invertible matrices over L. We have a Galois
extension L/K. The Galois group acts by applying the field automorphisms
to the entries of the matrices, so σ(A) = σ(aij)∀1 ≤ ij ≤ n. The fixed points
contain GLn(K).

– Backstory: The determinant of a n × n matrix A is defined as sgn(π) is either even or odd. +1 if
even and −1 if odd.

det(A) = ∑
π∈Sn

(
sgn(π)

n

∏
i=1

ai,π(i)

)

Consider σ(det(A)), where σ ∈ Gal(L/K) is a field automorphism. It
distributes over addition and multiplication:

σ(det(A)) = ∑
π∈Sn

(
sgn(π)

n

∏
i=1

σ(ai,π(i))

)
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The signum is either +1 or −1, so it is always in the base field K and is
fixed by σ. Thus σ(det(A)) = det(σ(A)). So the action of the Galois group
preserves determinants.

1.2 The fixed point functor and exact sequences

All of these examples are special cases of a more general concept: a group G
acting on an algebraic group G ⊆ GLn. An algebraic group is a matrix group

defined by polynomial conditions,
at least this is what “The theory of
group schemes of finite type over a
field.” by Milne says. I guess this is the
consequence of Chevalley theorem?

When studying group actions, we’re often interested in fixed points

AG = {a ∈ A | ∀σ ∈ G : σa = a}

Here, AG represents the set of all elements in A that are fixed by every ele-
ment of G. To study fixed points more systematically, we introduce the fixed
point functor −G. This functor takes a ZG-module and returns its fixed points.
We’re particularly interested in how this functor behaves with respect to exact
sequences.

Note 1.1.
Group action perspective: A ZG-module is an abelian group A endowed with a
(left) action (σ, a) 7→ σa of G on A such that for all σ ∈ G the map φσ : a 7→ σa
from A to A is a morphism of abelian groups. This implies that the action of G
is distributive, φσ(ab) = φσ(a) + φσ(b).
Ring module perspective: Equivalently, a ZG-module is a module over
the group ring Z[G], where elements consist of formal linear combina-
tions of elements from group G with integer coefficients, so something like
3g1 + 4g2 + 10g3 ∈ Z[G]. It contains both Z and G as subrings.
The Z[G]-module structure encapsulates both the abelian group structure of A
and the G-action on A, which leads to the key insight:

{module over Z[G]} ↔ {abelian group A with G-action}

Lemma 1.2. Consider an exact sequence of ZG-modules:

0 A B C 0
f g h

Applying the fixed point functor −G to this sequence yields:

0 AG BG CGf G gG

This new sequence is exact in Ab (the category of abelian groups). Thus the
functor −G is left-exact, meaning it preserves exactness at the left end of the
sequence.

• A natural question arises: Is the fixed point functor also right-exact? If such
a lifting always exists, then the fixed point functor preserves exactness at C,
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making it right-exact. If not, we’ve discovered an obstruction that tells us
something about the Galois action and the structure of our groups.

• To investigate this, we need to check if ker hG = im gG, or equivalently, if
im gG = CG. Breaking this down:

– Take any c ∈ CG.

– Since CG ⊆ C, there exists a b ∈ B such that g(b) = c.

– If b were fixed by G, we’d be done. But it might not be. Why σb = b?

* Consider σb − b for any σ ∈ G. We have g(σb − b) = g(σb)− g(b) =

σg(b)− g(b) = σc − c.

* Since c ∈ CG, σc − c = 0 and (σb − b) ∈ ker g.

* By exactness, ker g = im f , so σb − b ∈ im f .

* We can view this as an element of A (considering f as an inclusion
A ⊆ B). Also, C ∼= B/ im f . Or consider

presentations of groups.
So the question of right-exactness boils down to whether or not every G-
invariant element of C can be lifted to a G-invariant element of B and the
obstruction to it lives inside of A. And if b were indeed in BG then

(σb − b) = 0 ∈ A.
• This analysis leads us to define a map (for a given c ∈ CG):

φ : G → A, σ 7→ σb − b =: aσ

This map is called a crossed homomorphism (also known as a derivation
or 1-cocycle). It measures how far b is from being G-invariant. If b were G-
invariant, this map would be identically 0! Note that this is independent of
any b taken such that g(b) = c. Such cocycles are cohomologous.

Proposition 1.3. The map σ 7→ aσ satisfies:

aστ = aσ + σaτ

This property is what defines a crossed homomorphism.

• In the abelian case, we define

– Z1(G, A) = {a′ : G → A | a′στ = a′σ + σa′τ}, the set of all crossed
homomorphisms from G to A.

– B1(G, A) = {a : σ ∈ Z1(G, A) | ∃a′ ∈ A : aσ = σa′ − a′}.

– The quotient H1(G, A) = Z1(G, A)/B1(G, A) is called the first cohomol-
ogy group of G with coefficients in A. It measures the obstruction to the
right-exactness of the fixed point functor. The functor A 7→ H1(G, A) is a derived

functor of the A 7→ AG functor.
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The obstructions for right-exactness: find σb − b ∈ A such that it is 0 under
projection in Z1(G, A)/B1(G, A). It is given by δ(c) = [aσ] ∈ H1(G, A) =

Z1(G, A)/B1(G, A). We can extend our original sequence to a longer exact
sequence:

0 AG BG CG H1(G, A) H1(G, B) H1(G, C) 0δ

This sequence is exact in Ab, and the map δ (called the connecting homomor-
phism) measures the failure of right-exactness of the fixed point functor, since
ker δ represents all elements of CG which can be lifted to elements of BG. In field theory, H1(G, A) can represent

the obstruction to an element being
a norm. In the theory of algebraic
groups, H1(G, A) can represent the
obstruction to a torsor having a rational
point.

• The key idea of the 1-cocycle is to encode the failure of G-invariance in a way
that’s compatible with the group structures involved. It allows us to move
from concrete elements (b and c) to cohomological objects ([φ]) that capture
essential information about the Galois action and the relationship between
our groups A, B, and C. This approach transforms specific lifting problems
into more general cohomological questions, allowing us to apply powerful
theoretical tools and gain deeper insights into the structures we’re studying.

Exercise 1.4. Show that H1(G,−) is functorial and

0 AG BG CG H1(G, A) H1(G, B) H1(G, C) 0

is exact. Find example with δ ̸= 0.

• Solution: Consider Z2 = {e, σ}. For a function f : Z2 → Z the cocycle
condition states f (στ) = f (σ) + σ f (τ) for σ, τ ∈ Z2. When σ = τ = e, we
get f (e) = f (ee) = f (e) + e f (e) = 2 f (e), implying f (e) = 0. When σ = τ

we get f (σσ) = f (σ) + σ f (σ). Since σ2 = e, we get f (σ) = −σ( f (σ)). Since
σ acts by negation, we get f (σ) = f (σ), so there is really no condition on σ.
Each integer gives a different cocycle. Lets calculate coboundaries now. We
have the coboundary condition f (g) = g(a)− a for some a ∈ Z. So we have
f (e) = e(a)− a = a − a = 0 and f (σ) = σ(a)− a = −a − a = −2a. So every
coboundary has form e 7→ 0, σ 7→ −2a. This implies that H1(Z2; Z) = Z/Z2.
Alternatively we can look at the left resolution of Z/2Z and compute by
hand.

• Solution 2: Let’s consider a simple elliptic curve E over Q, f (x, y) = y2 =

x3 − x. it has an obvious 2-torsion point (0, 0). For an elliptic curve E, its
quadratic twist Ed is another elliptic curve that becomes isomoprhic to E over
the quadratic extension Q(

√
d) but is not isomorphic to E over Q. It is given

by dy2 = x3 − x. The isomorphism is given by E → Ed, (x, y) 7→ (x,
√

dy) as
we have dy2 = x3 − x 7→ d( y√

d
)2 = x3 − x which is equivalent to y2 = x3 − x

over Q (if we can multiply by
√

d, we can transform one equation into the
other). The practical use is that over Q(

√
d) we might get new torsion points,
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and Galois group {1, σ} acts on these points by sending
√

d to −
√

d. This
tells us about how different the twist is from the original curve.

– We have E(Q(
√

2))G = E(Q), the fixed points on E(K) are precisely the
Q-rational points (both coordinates in Q). For any elliptic curve E we have
a short exact sequence 0 → E[n] → E ×n−→ E → 0. Applying the fixed point
functor (−)G to it gives us the long exact sequence

0 → E[2]G → E(K)G ×n−→ E(K)G → H1(G, E[2]) → H1(G, E(K)) ×2−→ H1(G, E(K)) → 0

Since E[2] = {(0, 0), (1, 0), (−1, 0), ∞}, we have E[2]G = E[2].

• In the non-abelian case, we define

– H0(G, A) = AG, the fixed points as before.

– H1(G, A) = Z1(F, A)/ ∼, where ∼ is an equivalence relation defined by:
aσ ∼ bσ ⇐⇒ ∃a′ ∈ A : bσ = (a′)−1 · aσ · σa′. We cannot expect B1(G, A) to be a

subgroup. Why?
σa denotes the action of σ on a.In this case, H1(G, A) doesn’t have a group structure, but is a pointed set (a

set with a distinguished element). We can still define a notion of exactness for
sequences of pointed sets. Exactness in pointed sets (A, ∗) is

defined as im f = ker g = g−1(∗)
A ≤G B is G-equivariant inclusion.Proposition 1.5. For A ≤G B, we obtain G ↷ B/A and

1 H0(G, A) H0(G, B) H0(G, C) H1(G, A) H1(G, B)

is exact.

This is the Galois cohomology. Why do we care? In the non-commutative
case H1(G, A) classifies “K-objects”. In our lecture we will use this to classify
simple and simply connected linear algebraic k-groups G.

2 Preliminaries from algebraic number theory.
Lecture 2, 17.10.24

User: GRK, password: 2240.2.1 Number fields

Definition 2.1. An algebraic number field is a finite field extension k/Q.
“The concept of algebraic integer was
one of the most important discover-
ies of number theory. It is not easy
to explain quickly why it is the right
definition to use, but roughly speaking,
we can think of the leading coefficient
of the primitive irreducible polyno-
mials f (x) as a ‘denominator’.If α
is the root of an integer polynomial
f (x)=dxn + an−1xn−1 + . . ., then dα
is an algebraic integer, because it is a
root of the monic integer polynomial
xn + an−1xn−1 + . . . + dn−1a0.
Thus we can ‘clear the denominator’ in
any algebraic number by multiplying
it with a suitable integer to get an
algebraic integer.” — Artin, Algebra.

• This definition implies the following properties:

– The field k has characteristic 0.

– By the Primitive Element Theorem, k = Q(a) for some a ∈ K.

– There exists a unique minimal polynomial f ∈ Q[X] for a, with deg( f ) =
d = [k : Q].

• Let (a1, . . . , ad) be the roots of f in the algebraic closure of Q within C. These
roots are called the Galois conjugates of a. Note that these roots do not lie in
Q.
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• Properties of embeddings:

– For each i, the map a 7→ ai defines an isomorphism Q(a) ∼= Q(ai).

– Any embedding k → C must send a to some ai.

– There are exactly d embeddings k → C, denoted σ1, . . . , σd.

• Classification of embeddings:

– Note that (a1, . . . , ad) = (a1, . . . , ad), so σi(k) ⊆ R if and only if ai = ai.

– We can thus classify the embeddings as:

* Real embeddings (real places of K): r1

* Complex embeddings (complex places of K): 2r2 (counted in pairs due
to complex conjugation)

– This classification implies d = r1 + 2r2

• Examples:

– For k = Q( 3
√

2): r1 = 1, r2 = 1

– For k = Q(exp(2πi/n)), n ≥ 3: r1 = 0, r2 = φ(n)/2 (odd n)

Definition 2.2. For any α ∈ K, we define two rational numbers:
1. The norm: NK/Q(α) = ∏d

i=1 σi(α)

2. The trace: TrK/Q(α) = ∑d
i=1 σi(α)

Note: NK/Q(α) = det(α : K → K), and
similarly for the trace.

• Basis criterion: Let (α1, . . . , αd) ∈ k and λ1, . . . , λd ∈ Q. Then ∑d
i=1 λiαi =

0 ⇐⇒ ∑d
i=1 λiσj(αi) = 0 for all j. Moreover, {αi}d

i=1 is a basis of k if and only
if det(σi(αj)) ̸= 0.

Definition 2.3. The discriminant of a basis {α1, . . . , αd} of a number field k
of degree d over Q is defined as: discr({α1, . . . , αd}) = det2(σi(αj)) ∈ Q, where
σ1, . . . , σd are the d distinct embeddings of k into C.

Exercise 2.4. Prove that discr(αi) = det(Trk/Q(αiαj))1≤i,j≤d. Show that if k =

Q(a) for some a ∈ k, then discr({1, a, a2, . . . , ad−1}) = ∏1≤i<j≤d(σi(a)− σj(a))2.

To introduce relative versions for an extension l/k, we define the relative dis-
criminant discr()l/k using only those embeddings σi : l ↪→ C which restrict to
the identity on k.

2.2 Integrality in number fields
Algebraic number theory is not (al-
gebraic) number theory but rather
(algebraic number) theory.

Let k be an algebraic number field for the following discussion.

Definition 2.5. The ring of integers in k is defined as:

Ok = {α ∈ k : f (α) = 0 for some monic f ∈ Z[X]} = Zk.
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• Example: OQ = Z. It is often referred to as the ring of “rational integers”.

Proposition 2.6. For (α1, . . . , αr) ∈ k, the following are equivalent:
1. (α1, . . . , αr) ∈ Ok

2. Z[α1, . . . , αr] is finitely generated as a Z-module.

Proof: =⇒ If each αi ∈ Ok, then it satisfies a monic polynomial with integer
coefficients. Let the minimal polynomial of αi be: fi(x) = xni + a(i)ni−1xni−1 +

. . . + a(i)1 x + a(i)0 where each a(i)j ∈ Z. From the minimal polynomial, we can
express any higher power of αi as a Z-linear combination of lower powers:

α
ni
i = −

ni

∑
j=1

a(i)ni−jα
ni−j
i

This means that the set {1, αi, α2
i , . . . , α

ni−1
i } spans Z[αi] as a Z-module. (As

any higher power is a Z-linear combination of elements from the set and any
lower power is already in the set). Now consider all monomials of the form
αe1

1 αe2
2 . . . αer

r , where 0 ≤ ei < ni. They cover all possible combination of the αi’s
up to the power ni − 1 for each αi. Any higher powers can be reduced to linear
combinations of these monomials using the minimal polynomials. As such,
Z[α1, . . . , αr] is spanned by N = n1n2 . . . nr such monomials and therefore is
finitely generated over Z. ⇐= This part is trickier, so we will skip it (keyword
transformations, Cayley-Hamilton, characteristic polynomial).

• Since for α, β ∈ Ok their sum Z[α + β] and multiplication Z[α · β] are also
finitely generated, Ok is a ring.

Lemma 2.7. For α ∈ k, there exist β ∈ Ok, n ∈ Z such that α = β
n .

From now on we can assume that our algebraic number field is generated by
a primitive element which is an algebraic integer.

Proposition 2.8. Let k be of degree d over Q, and let a be a primitive element
of k. Then

Z[a] ⊆ Ok ⊆
1

discr(1, a, . . . , ad−1)
Z[a]

Because Ok lies between two free abelian groups of the same rank, it must be a
free abelian group of the same rank.

(Note: 1
discr(1,a,...,ad−1)

is in Z because
it is in the intersection of algebraic
integers in k and Q.)Corollary 2.9. Ok has a Z-basis of rank d. Any such basis is called an inte-

gral basis.

(Note: This relates to the theory of lattices in Q-vector spaces and Minkowski’s
geometry of numbers. The covolumes of these lattices play a crucial role in
understanding the structure of Ok.)



galois cohomology of algebraic groups 9

Corollary 2.10. Ok is noetherian.

Definition 2.11. The discriminant of k, denoted by discr()k or dk is given by
discr(α1, . . . , αd) for any integral basis {α1, . . . , αd}. This is well-defined because
the change of basis matrix has determinant det(T...) = ±1.

More generally, we can also define relative discriminants dL/K for a field
extension L/K as dL/K = discr(βi) where βi is a relative integral basis. This
dL/K is an ideal in OK, as we might not be in a principal ideal domain anymore.

Exercise 2.12. Let k = Q(
√

D), where D is a square-free integer. Show that:
a) If D ≡ 1 (mod 4), then an integral basis is 1, 1+

√
D

2 and dk = D.
b) If D ≡ 2, 3 (mod 4), then an integral basis is 1,

√
D and dk = 4D.

Solution: Fun fact: for any x in a number field,
TFAE:
a) The norm N(x),
b) The determinant of x in matrix
representation A,
c) The constant term of the characteris-
tic polynomial of A.
Fun fact 2: for any x in a number field,
a) The trace of A is the coefficient of
second highest degree in the character-
istic polynomial of A.
Thus trace trk(x) and detk(x) com-
pletely determine chark(x, T) of degree
2.

• Suppose a + b
√

D ∈ Ok with a, b ∈ Q. Then

a + b
√

D =

(
a bD
b a

)
=: A ∈ M2(Q),

since (a + b
√

D)(x + y
√

D) = ax + (ay + bx)
√

D + byD. This is the product
of multiplation with the “real” part ax + byD and the “imaginary” part (ay +

bx)
√

D.

• Since multiplication by a + b
√

D acts like multiplication by the matrix repre-
sentation, consider its characteristic polynomial char(x, T) = T2 − 2aT + a2 −
b2D.

– The constant term is Nk(x).

– The coefficient of T is − trk(x).

• For x to be an algebraic integer, we need

– Nk(a + b
√

D) = a2 − b2D ∈ Z

– trk(x) = 2a ∈ Z.

• Case-by-case: assume the above is true.

– If a ∈ Z, then b2D ∈ Z. Since D is square-free and b2 = q2

p2 , it cannot

cancel out the denominator p2 completely. So b2 ∈ Z, thus b ∈ Z since
we are working in Q. This implies that {1,

√
D} is the integral basis and

Z + Z
√

D = Ok

– If a ̸∈ Z, then from trace condition it is a completely reduced proper
fraction of the form 2k+1

2 ∈ Q. By the norm equation, ( 2k+1
2 )2 − b2D ∈ Z.

* Let’s look at (2a)2 − (2b)2D ∈ Z. We have 2(a)2 = (2k + 1)2 ∈ Z, so
(2b)2D ∈ Z. Since D is square-free, (2b)2 ∈ Z, therefore 2b ∈ Z.
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* Say, 2b = m ∈ Z, then b = m
2 . Plug this back into the original norm

equation:

N(a + b
√

D) = a2 − b2D = (
2k + 1

2
)2 − (

m
2
)2D =

4k2 + 4k + 1
4

− m2D
4

∈ Z

– This fraction is integer if the numerator is 0 mod (4).

* If m is odd, then m = 2l + 1 and m2 = 4l2 + 4l + 1, so we have 4(k2 −
l2D + k − lD) + (1 − D), which is divisible by 4 when 1 − D = 4 or
D = 1 mod (4).

* If m is even, then we have 1
4 ̸∈ Z. This implies that if D = 2, 3 mod (4),

then half-integers don’t work and a, b ∈ Z.

* Normalizing a and b for D = 1 mod (4) gives: (2k+1
2 + (2l+1)

2

√
D =

k + l
√

D + 1+
√

D
2 , so Ok = Z + Z( 1+

√
D

2 ).

2.3 The arithmetic of algebraic integers

• Example: Consider the number field k = Q(
√
−5). In this field:

– The ring of integers is Ok = Z[
√
−5].

– We have the factorization: 21 = 3 · 7 = (1 + 2
√
−5) · (1 − 2

√
−5). All

factors in this factorization are irreducible. This demonstrates that Ok is
not a Unique Factorization Domain (UFD). (Consider norm of an algebraic
number. . .)

– Kummer’s idea of ideal numbers was to address this lack of unique fac-
torization. He proposed the concept of “ideal numbers” p1, p2, p3, p4 such
that: p1 · p2 = 3, p3 · p4 = 7, p1 · p3 = 1 + 2

√
−5, p2 · p4 = 1 − 2

√
−5. This

would lead to: 21 = p1 p2 p3 p4 = p1 p3 p2 p4, differing only by permutation.

– Properties of these ideal numbers:

* p1|3 and p1|(1 + 2
√
−5)

* p1|(λ · 3 + µ · (1 + 2
√
−5)) for any λ, µ ∈ Ok

– This suggests defining p1 as the set of all α ∈ Ok that it divides. We can
thus represent these "ideal numbers" as ideals: p1 = (3, 1 + 2

√
−5), p2 =

(3, 1 − 2
√
−5) . . .

This approach leads to the idea of achieving unique factorization in terms of
ideals rather than elements.

Theorem 2.13. The ring Ok is noetherian, integrally closed and of dimension 1.

These three properties characterize a fundamental class of rings in algebraic
number theory:

Definition 2.14. An integral domain satisfying these three properties is called
a Dedekind domain.
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The significance of Dedekind domains lies in their unique factorization prop-
erty for ideals, which generalizes the unique factorization of elements in UFDs.
Basically, Dedekind domains are to ideals what UFDs are to elements. Lecture 3, 31.11.24

Theorem 2.15 (Unique Prime Ideal Factorization). Let R be a Dedekind domain.
Then every nonzero fractional ideal a ̸= R has a unique factorization a = p

e1
1 pe2

2 . . . pen
n

where pi are prime ideals and ei ∈ Z.

Let O be a Dedekind domain with field of fractions K.

Definition 2.16. A fractional ideal of O is a finitely generated O-submodule
a of K.

• Key examples and properties:

– Every integral ideal a ⊆ O is a fractional ideal.

– For any a ∈ K∗, the principal fractional ideal (a) is a fractional ideal.

– If a is a fractional ideal, then αa is also a fractional ideal for any α ∈ K∗.

• A key characterization: An O-submodule a ⊆ K is a fractional ideal if and
only if there exists a nonzero element c ∈ O such that: c · a ⊆ O This c
effectively "clears the denominators" in a, making ca an integral ideal.

• For a nonzero fractional ideal a, we define its inverse: a−1 = {x ∈ K : x · a ⊆
O}. This set is itself a fractional ideal, since it’s clearly an O-module and for
the c that clears denominators in a, we have ca−1 ⊆ O.

Definition 2.17. The fractional ideals form the ideal group JK under multipli-
cation where:
1) Multiplication: ab = ∑i aibi : ai ∈ a, bi ∈ b.
2) Inverse: a−1 = x ∈ K : xa ⊆ O.
3) Identity: the ring O itself, denoted (1).

Corollary 2.18. Every a ∈ JK has a unique decomposition: a = ∏(0) ̸=p p
vp

where vp ∈ Z and almost all vp = 0. This shows JK is free abelian with basis
Spec(O) \ (0).

Let PK = {(a) : a ∈ K∗} be the principal fractional ideals. ClK = { fractional ideals / principal
fractional ideals }.

Definition 2.19. The class group ClK = JK/PK fits in the exact sequence:

1 → O∗ → K∗ → JK → ClK → 1

Here K∗/O∗ measures the gain/loss in passing from numbers to ideal numbers.

Loss or gain, are the same.

• Further without proofs: For number fields K = k with ring of integers Ok, we
have the Gauss-Minkowski theorem.
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Theorem 2.20 (Gauss-Minkowski). The class group Clk of a number field k is finite.

• The order |Clk| = hk is called the class number of k. This invariant measures
how far Ok is from being a principal ideal domain.

– Notable example: For square-free D > 0, the class number h
Q(

√
−D) = 1

if and only if: D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}. This result (Gauss’ conjec-
ture) was proven by Baker-Stark-Heegner.

– Still open: The class number problem remains challenging. For instance,
it’s unknown whether infinitely many D exist with h

Q(
√

D) = 1.

• For Dedekind domains: Clk = 1 ⇐⇒ Ok is a PID, PID =⇒ UFD (always)
and in Dedekind domains specifically UFD =⇒ PID (exercise).

Theorem 2.21 (Dirichlet’s Unit Theorem). The unit group of Ok has the structure:

O∗
k
∼= µ(k)⊕ Zr1+r2−1

where µk is the gro7up of roots of unity in k, r1 is the number of real embeddings and r2

is the number of pairs of complex embeddings.

Proof strategy: “Geometry of numbers”, lattice, convex closed subsets, etc...

Exercise 2.22. Prove that Ok/a is finite for every nonzero ideal a. Hint: First
consider the case where a = p is prime.

Definition 2.23. The absolute norm of a nonzero ideal a is: n(a) = |Ok/a|

• Key properties:

– For principal ideals: n((a)) = |Nk/Q(a)|

– Multiplicative: n(ab) = n(a)n(b)

– Defines a homomorphism: JK → R>0

Exercise 2.24. Prove the above properties.

This is all we need about integrality in number fields.

2.4 Decomposition and ramification

Let k be a number field of degree d and p a rational prime. In Ok, p decomposes
as Ok = p

e1
1 · · · per

r . Note that each Ok/pi is a finite field, so if we let fi = [Ok/pi :
Fp], then n(pi) = p fi . Applying n to the decomposition of pOk, we get: pd =

pe1 f1 · · · per fr . Therefore e1 f1 + · · ·+ er fr = d (fundamental equation). We call ei

the ramification index of pi over p and fi the inertia degree of pi over p.

• Extreme cases: for prime ideals in Ok over rational primes:
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– r = d: p is split.

– r = 1, f1 = 1: p ramifies completely.

– r = 1, e1 = 1: p is inert.

We say pi|p if and only if pOk ⊆ pi for a unique rational prime p, and say "pi

lies over p".

Definition 2.25. A rational prime p is called ramified in k if ep > 1 for some
prime ideal p lying over p.

Theorem 2.26. A rational prime p is ramified in k if and only if p|dk (where dk is the
discriminant).

Theorem 2.27. Only finitely many rational primes ramify in k.
Logically, everything now is ideals
(except for maybe ramification).

• The Galois group acts on prime ideals lying over rational primes. This action:

– Is transitive (exercise)

– Preserves ramification indices ei and inertia degrees fi

Therefore, in the Galois case, the fundamental equation becomes: d = e f r.
For cyclic extensions of prime degree over Q, this constrains possible decom-
position types to the three extreme cases listed above.

2.5 Valuations and completions

Note 2.28. In a number field k, we can study its arithmetic through two
equivalent perspectives. The first approach uses ideal theory, where we study
the factorization behavior of prime ideals p in Ok. The second approach uses
valuations, where each prime ideal p naturally gives rise to a p-adic valuation
vp : k∗ → Z. This valuation comes from the prime factorization of principal

ideals: when we write xOk = ∏ p
vp(x)
p , the exponent vp(x) is our valuation. We

can then define a non-archimedean absolute value by setting |x|p = q−vp(x).
This transition from ideals to valuations leads naturally to completions and
local fields, providing powerful analytical tools for studying number theoretic
questions.

Definition 2.29. A valuation of k is a map | · | : k → R satisfying for all x, y ∈
k:
1) |x| ≥ 0 (non-negativity)
2) |xy| = |x||y| (multiplicativity)
3) |x + y| ≤ |x|+ |y| (triangle inequality)

The term "valuation" typically refers to
the exponential valuation.

• We exclude the trivial valuation |x| = 1 ⇐⇒ x ̸= 0.
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• A valuation is non-archimedean if |x + y| ≤ max |x|, |y|, and archimedean
otherwise.

• Example:

– Archimedean: For σ : k ↪→ C, define |x|σ = |σ(x)|

– Non-archimedean: For prime ideal p0 ⊆ Ok:

* Write xOk = ∏p p
vp(x) for x ∈ k∗

* Set |x|p0 = q−vp0(x) where q = |Ok/p0| = p fp for p0 ∩ Z = (p) (p-adic
valuation)

Definition 2.30. Two valuations are equivalent if they differ by scaling or
induce the same topology.

Theorem 2.31 (Ostrowski). These examples give all valuations on k up to equivalence.
Lecture 4, 07.11.24

Definition 2.32. The equivalence classes of these valuations are called places.
We have finite places (from non-archimedean valuations) and infinite places
(from archimedean valuations).

• Intuitively, places correspond to different ways to "view" elements of a field.
Finite places correspond to prime ideals in the ring of integers. Infinite places
correspond to real and complex embeddings. Each place gives us a different
notion of "being small" or "being close". For any place v, we can create a
complete field by adding all limits of Cauchy sequences:

Definition 2.33. The completion kv of k with respect to the place v is: k ↪−→ kv

where kv is complete with respect to the metric dv(x, y) = |x − y|v. Formally:
kv =

{ Cauchy sequences in k}
{null sequences} .

• Examples: For a prime p, completing Q with respect to the p-adic valuation
gives the p-adic numbers Qp. Completing Q with respect to the usual abso-
lute value gives R.

Definition 2.34. For a place v, we have two important rings:
1) O(v) = {x ∈ k : v(x) ≤ 1} ⊂ k.
2) Ov = {x ∈ k : v(x) ≤ 1} ⊂ kv.

• Key properties:

– Both are principal ideal domains (PIDs),

– Both have unique maximal ideals πOv and πO(v) respectively, these are
discrete valuation rings (DVRs),

– A uniformizer π generates these maximal ideals.
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Theorem 2.35 (Extensions of valuations). Let K be complete with valuation v and
L/K be algebraic. Then v extends uniquely to L and if [L : K] = d < ∞, then for
x ∈ L: ∇(x) = d

√
v(NL/K(x).

• Important special case: for the p-adic valuation vp on Qp:

– Extends uniquely to Qp,

– Given embedding σ : k ↪→ Qp, get valuation vσ = vp ◦ σ,

– If τ ∈ Gal(Qp/Qp), then vσ = vτ◦σ.

Theorem 2.36 (Classification of Extended Valuations). Let k be a number field and
vp be the p-adic valuation on Q. Then:
1) Every extension w of vp from Q to k is of the form w = vσ for some embedding
σ : k ↪→ Qp.
2) Two such extensions are equal (vσ = vσ′ ) if and only if there exists τ ∈ Gal(Qp/Qp)

such that σ′ = τ ◦ σ.

Note 2.37. This theorem tells us that all possible ways to extend the p-adic
valuation come from embeddings into Qp. Two different embeddings give the
same valuation precisely when they differ by an automorphism of Qp over
Qp. This explains why we get a finite number of extensions for each prime p,
corresponding to the different prime ideals lying over p.

• Places can be classified according to their completions:

– Finite places correspond 1-1 with:

* Conjugacy classes of embeddings σ : k ↪→ Qp

* Non-zero prime ideals p of Ok lying over p

– Infinite places correspond 1-1 with:

* Real: Embeddings σ : k ↪→ R

* Complex: Conjugate pairs of embeddings σ : k ↪→ C, σ(k) ̸⊂ R

• For a place w lying over p, we have the following fundamental diagram:

k kw

Ok Op

This square is commutative and shows: the vertical arrows represent inclu-
sions, the horizontal arrows represent completions, Ok is the ring of integers
of k, Op is the ring of integers in the completion. This diagram illustrates
how the local and global perspectives interact: completing the global field k
and its ring of integers Ok at a prime gives us the local field kw and its ring of
integers Op.
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Theorem 2.38 (Local Decomposition). For a rational prime p < ∞, we have k ⊗Q

Qp ∼= ∏w|p kw. Moreover, for each place w|p: [kw : Qp] = ew · fw.

Note 2.39. This theorem lets us understand the relationship between a num-
ber field k and its completions above a prime p.
The tensor product k ⊗Q Qp represents what happens when we view our num-
ber field k "through p-adic glasses" - mathematically speaking, this is called base
change to Qp. Remarkably, this decomposes into pieces, one for each place w of
k lying above p. Each piece is a completion kw, which is itself a finite extension
of Qp.
To understand each piece kw, we look at its degree over Qp. This degree factors
as [kw : Qp] = ew · fw, where:
1) ew is the ramification index, telling us how much ramification occurs above p
2) fw is the inertia degree, measuring how much the residue field grows
This decomposition explains precisely how a rational prime p can "split" when
we move up to our number field k. In fact, we can recover the global degree
of our number field from these local pieces: [k : Q] = ∑w|p[kw : Qp]. Each
completion kw thus represents a "local piece" of k sitting above p, and together
these pieces contain all the local information about how p behaves in k. For ex-
ample, if k = Q(

√
5) and p = 5, there is only one place above 5, and we have

e = 2, f = 1, matching the global degree [k : Q] = 2. In contrast, for p = 11,
which splits completely, we get two places each with e = f = 1, and again their
degrees sum to 2.

Definition 2.40. The ring of adeles Ak combines all completions:
1) Ak = ∏ w ∈ V(k)kw with restriction that elements lie in Ow for almost all w
2) The idele group Ik = A∗

k (multiplicative group of adeles)
3) k embeds diagonally in both with discrete image

2.6 Local-global principle

The fundamental question: If an equation has solutions in all completions kv

(local solutions), does it have a solution in k (global solution)?

• Success Cases: The principle works for:

– Quadratic forms (Minkowski-Hasse)

– Norm equations for cyclic extensions

– Some other special polynomials

• Famous Counterexamples:

– Selmer’s cubic: 3x³ + 4y³ + 5z³ = 0

– Genus 1 curves can fail

– Higher degree forms often fail
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• Modern Understanding:

– Obstruction is measured by the Shafarevich-Tate group

– For genus 0 curves, principle holds

– For genus ≥ 1, additional cohomological obstructions appear

– Brauer-Manin obstruction explains many failures

Theorem 2.41. Hasse norm principle. Let k/Q be cyclic and x ∈ Q. Then x =

Nk/Q(y) for some y ∈ k iff x = Nkv/Qp(yv) for some yk ∈ kv for all v|p and all
p ≥ ∞.

Theorem 2.42. Hasse principle for central simple algebras.
Lecture 5, 22.11.2024
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