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Conventions

Throughout the text we make use of shorthand notation as common in model
theory. We denote

• the set of integers {0, 1, . . . , n− 1} as n,

• a finite number n ∈ N as n < ω,

• the set of all subsets of X of size n as
(
X
n

)
,

• the set of all functions f : X → Y as XY .

For example, the set of all functions f : X → {0, 1} is denoted as X2.

• log denotes the logarithm to the base 2,

For any set Y there exists only one function f : ∅ → Y , also known as the
empty function.
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Introduction

This thesis explores the fascinating connections between two seemingly dis-
parate fields of mathematics and computer science: model theory and machine
learning. At first glance, these areas may appear to have little in common
— model theory is a branch of mathematical logic concerned with the formal
study of mathematical structures, while machine learning focuses on algo-
rithms that can learn and make predictions from data. However, there are
deep and surprising links between fundamental concepts in these domains.

Our investigation centers on two key relationships:

• The connection between Probably Approximately Correct (PAC) learn-
ability in computational learning theory and the model-theoretic notion
of NIP (Non-Independence Property) formulas.

• The correspondence between online learnability in computational learn-
ing theory and stable formulas in model theory.

These connections allow us to bridge abstract logical properties of theories
with concrete learnability guarantees for concept classes. By translating be-
tween the languages of logic and learning theory, we gain new insights into the
theoretical foundations of machine learning and expand our understanding of
the expressiveness of logical theories. This thesis is structured in two main
parts:

In the first part, we prove the fundamental theorem of PAC learning,
which establishes that a concept class is PAC learnable if and only if it has
finite Vapnik-Chervonenkis (VC) dimension. We then introduce NIP theories
and demonstrate the equivalence between finite VC dimension and the NIP
property.

The second part explores online learning and the Littlestone dimension
as a measure of concept class complexity. We present the Standard Optimal
Algorithm for online learning and prove its optimality. On the model theory
side, we establish the equivalence between finite Littlestone dimension and
Shelah’s 2-rank. This allows us to show that stable formulas correspond to
concept classes with finite Littlestone dimension.

Finally, we illustrate these concepts with several examples of stable the-
ories. These examples demonstrate how model theory provides a rich source
of concrete, learnable concept classes.

While a deep understanding of these areas is not required, readers are
expected to have some background in key areas. In model theory, familiarity
with first-order logic, languages, structures, models and theories is benefi-
cial. Knowledge of key theorems such as the Löwenheim-Skolem theorem and
the compactness theorem will be particularly helpful. In probability theory,
knowledge of basic concepts including probability spaces, measures, random
variables and expectation will be helpful.
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1 VC dimension and NIP theories

1.1 PAC learning framework

The Probably Approximately Correct (PAC) learning framework, introduced
by Leslie Valiant in 1984, provides a formal foundation for analyzing machine
learning problems. It offers a mathematical model to quantify when and how
learning is possible, bridging the gap between computational learning theory
and practical machine learning algorithms.

In the PAC framework, the learner receives a sample of labeled examples
{(xi, f(xi)) : i ∈ n}, where each xi is drawn independently from X according
to the unknown distribution µ, and f ∈ C is the ground truth they aim to
learn. The learner’s goal is to output a hypothesis h ∈ H that, with high
probability, closely approximates the target concept f on future examples
drawn from the same distribution.

At its core, PAC learning addresses a fundamental question: Under what
conditions can a learning algorithm reliably generalize from a finite set of
examples to accurately predict outcomes on unseen data?

Definition 1.1 The framework formalizes this idea by introducing several
key components:

• An input space X is a set of all possible instances,

• A concept f is a binary-valued function X → {0, 1},
• A concept class C ⊆ X2 is a class of concepts,

• A target concept f ∈ C is the true function to be learned,

• A hypothesis h is a function, representing the learner’s prediction,

• A hypothesis class H ⊆ X2 is a set of hypotheses h,

• A sample S = {(x1, f(x1)), . . . , (xn, f(yn))} ⊆ (X × 2)n, n < ω, corre-
sponding to the restriction of target function f to {x1, . . . , xn}.

• A hypothesis function or a learning function H : Cfin → H. It repre-
sents an algorithm or deterministic procedure, which given a sample S
corresponding to the restriction f |S ∈ Cfin outputs a prediction H(f).

– Cfin = {C|Y : Y ⊆ X,Y finite} represents all possible labeled sam-
ples from X.

Remark 1.2 (Restrictions) In this thesis, we focus on PAC learning with
two important properties:

• Consistency: A hypothesis h is consistent with a labeled sample, if
it correctly classifies all instances in that sample. Formally, given a
sample S, h satisfies ∀xi ∈ S : h(xi) = f(xi). Similarly, a hypothesis
function H is consistent, if for all f ∈ C and all S ⊆ X finite it holds
∀x ∈ S : H(f |S)(x) = f(x).
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• Realizability: This assumes that there exists a hypothesis h ∈ H which
perfectly classifies all instances, that is ∀x ∈ S : h(x) = f(x).

Given our focus on the realizable case, we will assume that the hypothesis class
H is equal to the concept class C. Consequently, we can refine our notation
and sometimes write H : Cfin → C or H : Cfin → X2 in special cases.

Definition 1.3 (PAC learnability) Let C be a concept class on a set X.
We say that C is probably approximately correct (PAC) learnable if there exists
a hypothesis function H : Cfin → X2 such that:

• For all ε, δ ∈ (0, 1), there exists a natural number Nε,δ < ω satisfying
the following condition:

• For all n ⩾ Nε,δ, all f ∈ C, and all probability measures µ on X (with
the correct sets being µ-measurable),

µn({a ∈ Xn : errµ(H, f, a) > ε}) ⩽ δ

where:

– ε ∈ (0, 1) is the accuracy parameter, specifying the acceptable error
rate,

– δ ∈ (0, 1) is the confidence parameter indicating the desired prob-
ability of successfull learning,

– Nε,δ : (0, 1)
2 → N, (ε, δ) 7→ Nε,δ is the sample complexity function,

which determines the minimum number of examples required to
guarantee PAC learning.

– errµ(H, f, a) is the error of the hypothesis function H predicting f
given sample a = (a1, . . . , an), defined by

µn({x ∈ X : H(f |a)(x) ̸= f(x)})

This definition ensures that with high probability (1−δ), the learning function
H will produce a hypothesis that is approximately correct (up to an error of
ε) when the sample size is at least Nε,δ.

1.2 The fundamental theorem of PAC Learning

The fundamental theorem of PAC learning, first proven by Blumer, Ehren-
feucht, Haussler and Warmuth in 1989, establishes that a concept class is PAC
learnable if and only if it has finite VC dimension. This section presents a
complete proof of this theorem.
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1.2.1 VC dimension and shatter function

Definition 1.4 (VC dimension) Let X be an input space and let C ⊆ X2
be a concept class on X. For any Y ⊆ X:

• the restriction of C to Y is C|Y := {f |Y : f ∈ C}.

• C cuts out Y from X if ∃f ∈ C : f |X = 1Y .

• C shatters Y if C|Y = Y 2 or, equivalently, if C cuts out every subset of
Y .

The Vapnik-Chervonenkis (VC) dimension of C, denoted VCdim(C), is defined
as

sup{|Y | : Y ⊆ X is finite and C shatters Y }.

If C shatters arbitrarily large finite sets, then VCdim(C) = ∞. If C shatters
no set, then VCdim(C) = −∞. A concept class C is called a VC class if it has
finite VC dimension.

Remark 1.5 (Learning problems and set systems) There exists a nat-
ural correspondence between learning problems (X, C) and set systems (X,F).
Each f ∈ C defines a unique set Af ⊆ X where Af = {a ∈ X : f(a) = 1}. The
set system perspective often simplifies proofs and combinatorial arguments,
while the function-based view aligns more closely with the learning theory
framework. We will sometimes use the notation (X,F) interchangeably with
(X, C) in our proofs, as this leads to more concise and intuitive arguments.

Informally, the VC dimension measures the complexity or expressiveness
of a concept class in relation to its domain X by looking at how many points
it can label arbitrarily. A higher VC dimension indicates that the concept
class can represent more complex decision boundaries.

Example 1.6 (Easy) Consider X = R and the class of threshold functions
C = {fa(x) : fa(x) = 1 if x ⩾ a, fa(x) = 0 if x < a}. This class has VC
dimension 2, since it can shatter any set of two points and cannot shatter any
set of three points. Note that the definition of VC dimension requires only
one set of maximum size to be shattered.

It is important to note that the VC dimension is not an equivalence.

VC dimension n ≠⇒ any set of cardinality n can be shattered
VC dimension n ⇐= any set of cardinality n can be shattered

Example 1.7 (Intermediate) ConsiderX = R2 and the class of half-planes
C = {fa,b(x) : fa,b(x) = 1 if ⟨a, x⟩ ⩾ b, fa,b(x) = 0 if ⟨a, x⟩ ⩽ b}. Using
elementary geometry (specifically, Radon’s theorem), one can prove that C
has VC dimension 3.
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Remark 1.8 Prominent mathematician Terry Tao writes in his blogpost:

In the field of analysis, it is common to make a distinction be-
tween “hard”, “quantitative”, or “finitary” analysis on one hand,
and “soft”, “qualitative”, or “infinitary” analysis on the other. “Hard
analysis” is mostly concerned with finite quantities (e.g. the car-
dinality of finite sets, the measure of bounded sets, the value
of convergent integrals, the norm of finite-dimensional vectors,
etc.) and their quantitative properties (in particular, upper and
lower bounds). “Soft analysis”, on the other hand, tends to deal
with more infinitary objects (e.g. sequences, measurable sets and
functions, σ-algebras, Banach spaces, etc.) and their qualitative
properties (convergence, boundedness, integrability, completeness,
compactness, etc.). To put it more symbolically, hard analysis is
the mathematics of ε, N , O(), and ⩽; soft analysis is the mathe-
matics of 0, ∞, ∈, and →.

This distinction also characterizes the approaches to VC dimension in
computer science and model theory.

In computer science, researchers typically employ a quantitative approach
to VC dimension. They often seek to determine or estimate the exact VC
dimension of concept classes, as this provides explicit bounds on learning
complexity. Their proofs typically follow a two-step approach: First, they
show that any set of cardinality n + 1 cannot be shattered and then they
explicitly shatter a set of cardinality n.

In contrast, model theorists generally adopt a qualitative approach to VC
dimension. Their primary concern is whether the VC dimension is finite or
infinite, rather than its exact value. A model theorist might prove that a
theory T has finite VC dimension (equivalently, is NIP) without necessarily
computing the exact VC dimension of any particular formula in T .

The following example illustrates the “soft” approach in model theory:

Example 1.9 (Hard) The theory of real ordered field1 with an exponential
function is o-minimal, and thus NIP. This implies that any formula φ is NIP
and the concept class uniformly defined by φ is a VC class. Such examples
provide only qualitative information about the learnability, without specifying
the exact VC dimension.

The next two theorems establish elementary properties of VC dimension.
The first theorem demonstrates the monotonicity properties of VC dimension
with respect to both the input space and the concept class. The second

1A reader without a background in model theory can safely skip this example until later
sections, where we discuss it in detail.
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theorem shows how VC dimension changes when concept classes are combined
using different Boolean operations.

Theorem 1.1 (Basic properties I) Let C ⊆ 2X be a concept class on input
space X with VCdim(C) = d <∞.

(1) Any subset of a shattered set A is shattered.

(2) For any set Y with Y ⊆ X: VCdim(C|Y ) ⩽ VCdim(C).

(3) For any concept classes C′ with C′ ⊆ C: VCdim(C′) ⩽ VCdim(C).

Proof Let (X,F) be the set system corresponding to (X, C) by Remark 1.5.

(1) Let B ⊆ A. To show B is shattered, we need to prove that ∀S ⊆ B :
∃F ∈ F : F ∩ B = S. Since B is a subset of A, S is also a subset of
A. Since A is shattered by F , there exists F ∈ F : F ∩ A = S. Now,
F ∩ B = (F ∩ A) ∩ B = S ∩ B = S. Therefore, we have found F ∈ F
such that F cuts out S. Since S was arbitrary, this holds for all subsets
of B. Thus, B is shattered by F .

(2) Let A ⊆ Y be any set shattered by F|Y . We need to show that |A| ⩽ d.
For every subset S ⊆ A, there exists a set (F ∩Y ) ∈ F|Y : (F ∩Y )∩A =
S. Since A ⊆ Y , this implies (F ∩ Y ) ∩A = F ∩A = S. Therefore A is
also shattered by F . Since VCdim(C) = d, we must have |A| ⩽ d.

(3) Let F ′ ⊆ F and let A be any set shattered by F ′. Since F ′ ⊆ F this
automatically implies that A is shattered by F . Since VCdim(C) = d,
we must have |A| ⩽ d.

Theorem 1.2 (Basic properties II) Let X be an input space, f ∈ X2 a
function, and C1 and C2 concept classes of VC dimension n1 < ω and n2 < ω.
Then the following holds regarding concept classes and their VC dimensions:

(1) intersection C∩ = {f1·f2 : f1 ∈ C1, f2 ∈ C2}, VCdim(C∩) ⩽ max{n1, n2},

(2) union C∪ = {f1 + f2 − (f1 · f2) : f1 ∈ C1, f2 ∈ C2}, VCdim(C∪) ⩾
max{n1, n2}

(3) negation C¬ = {1− f1 : f1 ∈ C1}, VCdim(C¬) = n1

(4) symmetric difference C △ f = {|g − f | : g ∈ C1}, VCdim(C △ f) = n1

Proof Let (X,F1), (X,F2) be the set systems corresponding to (X, C1), (X, C2).
Let (X,F1 △ B), B = {x ∈ X : f(x) = 1} be a set system corresponding to
(X, C △ f). The statements to prove correspond to Boolean operations on F1

and F2.

(1) By Theorem 1.1(3), VCdim(C1 ∩ C2) ⩽ max{n1, n2}.
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(2) By Theorem 1.1(3), VCdim(C1 ∪ C2) ⩾ max{n1, n2}.

(3) Let A ⊆ X of cardinality n1 be shattered by C1. For every subset S ⊆ A,
∃F ∈ F1 : F∩A = S. This implies ∀(A\S) ⊆ A,∃F ∈ F1 : A\(F∩A) =
A\F = A\S. Since each S is in one-to-one correspondence with (A\S),
VCdim(C¬) = n1.

(4) Let A ⊆ X of cardinality n1 be shattered by C1. The proof is a character-
building exercise in basic set theory. We show that any two sets in F1

cut out the same subset from A if and only if they cut out the same
subset in (F1 △B).

– For any F1, F2 ∈ F1, we have:

F1 ∩A = F2 ∩A ⇐⇒ F1 ∩B ∩A = F2 ∩B ∩A and
F1 ∩ (X \B) ∩A = F2 ∩ (X \B) ∩A

This equivalence holds because A can be partitioned into A ∩ B
and A ∩ (X \B).

⇐⇒ (X \ F1) ∩B ∩A = (X \ F2) ∩B ∩A and
F1 ∩ (X \B) ∩A = F2 ∩ (X \B) ∩A

This equivalence holds because membership in F1 completely de-
termines membership in X \ F1.

⇐⇒ ((X \ F1) ∩B) ∪ (F1 ∩ (X \B)) ∩A =

((X \ F2) ∩B) ∪ (F2 ∩ (X \B)) ∩A

This step combines the two conditions using set union. This equiv-
alence holds because the sets (X \ F1) ∩ B and F1 ∩ (X \ B) are
disjoint (and similarly for F2).

⇐⇒ (F1 △B) ∩A = (F2 △B) ∩A.

The final step uses the definition of symmetric difference.
– Therefore, C1|A cuts out 2n1 subsets from A if and only if (C1△f)|A

cuts out 2n1 subsets from A. This implies that they both shatter
A and have the same VC dimension.

While VC dimension considers all possible subsets of X, it is often useful
to analyze how the concept class behaves on subsets of specific sizes. This
allows us to examine how the “shattering power” of the concept class grows
as we increase the size of the subsets we consider.

Definition 1.10 (Shatter function) Define the shatter function πC(m) :
N→ N as

πC(m) := max

{
|CY | : Y ∈

(
X

m

)}
.
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Lemma 1.11 (Sauer-Shelah, 1972) The function Φn(m) counts
the number of subsets of an
m-element set that have
size less than or equal to n.
In other words, it
represents the number of
subsets of {1, 2, . . . ,m}
with cardinality at most n.

Define Φn(m) :=
∑n

i=0

(
m
i

)
. If C has

VC dimension n and m > n, then πC(m) ⩽ Φn(m).

There exist numerous proofs and versions of this lemma, which has impor-
tant applications in model theory, graph theory, computational geometry and
other disciplines. We give a proof using the “shifting” technique commonly
used in extremal set theory.

Proof (Lemma 1.5, [Che16]) We proceed by contradiction. Fix some m >
n and suppose πC(m) > Φn(m).

• By Definition 1.10, there exists Y ⊆ X with |Y | = m such that |C|Y | =
πC(m) > Φn(m). Since πC(m) depends only on the size of |C|Y | ⩽ 2Y ,
we can without loss of generality assume that:

– C is finite with |C| = πC(m),
– X = {x1, . . . , xm} with |X| = m.

We construct a sequence of concept subclasses C0, . . . , Cm of C using a “shift-
ing” operation.

• Let C0 := C.

• Given Ck, construct Ck+1 as follows:

– For each f ∈ Ck, if f(xk+1) = 1 and exists g ̸∈ Ck such that
g(xi ̸=k+1) = f(xi ̸=k+1) and g(xk+1) = 0 then replace f by g in
Ck+1. Otherwise, keep f in Ck.

• This construction has three key properties:

(1) For each l, |Ck| = |Ck+1|,
(2) If A is shattered by Ck+1, then A is shattered by Ck,
(3) If f ∈ Cm, then supp(f) is shattered by Cm.

• Proofs of properties:

(1) Holds by construction: each replacement preserves cardinality.
(2) Let A be shattered by Ck+1. For any B ⊆ A:

∗ If g cuts out B and g ∈ Ck, then Ck cuts out B.
∗ If g cuts out B but g ̸∈ Ck, then g must have been added to
Ck+1 to replace some f ∈ Ck during the shifting operation.

· If xk+1 ̸∈ A, then f ∈ Ck that g replaced cuts out B, since
g|A = 1B = f |A. Thus Ck cuts out B.

· If xk+1 ∈ A, then xk+1 ̸∈ B (since g(xk+1) = 0). Since
Ck+1 shatters A, there exists h ∈ Ck+1 cutting out B ∪
{xk+1}. By construction, h must have been in Ck and h
should have been replaced with h′ ̸∈ Ck cutting out B.
Since it was not replaced, h′ was already in Ck, thus Ck
cuts out B.
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n

2n

m

πC(m)

Figure 1: A schematic depiction of shatter function growth for a concept class
C with VCdim(C) = n. The y-axis uses a logarithmic scale. For m ⩽ n, the
function grows exponentially as 2m. At m = n, the function transitions to
slower growth, bounded by a polynomial function.

(3) Assume ∃f ∈ Cm with supp(f) not shattered by Cm. Then ∃xi+1 ∈
supp(f) with no g ∈ Cm such that g(xi+1) = 0. But f would
have been replaced at step i by construction, removing xi+1 from
supp f . This contradicts the assumption f ∈ Cm.

It follows from (2) that VCdim(Cm) ⩽ n. From (3), no f ∈ Cm has | supp(f)| >
n. Therefore: Φn(m) ⩾ |Cm|

(1)
= |C| = |πC(m)|.

Corollary 1.12 (Growth of the shatter function) Let C be a concept class
of VC dimension n. Then,

πC(m)

{
= 2m m ⩽ n

⩽ Φn(m) m > n

and, in particular, πC(m) ∈ O(mn).

Remark 1.13 In the special case where C =
(
X
n

)
, this bound is tight for

m > n.

Proof (Corollary 1.12)

• For m ⩽ n, the bound holds by Theorem 1.1(1).

• For m > n, the bound holds by Lemma 1.11.
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• The growth estimate holds due to the following well-known binomial
inequality:

Φn(m) =
n∑

i=0

(
m

i

)
⩽

n∑
i=0

(me
i

)i
⩽ mn.

For each term in the sum above, we have(
m

i

)
=

m!

i!(m− i)!
=

(i+ 1)(i+ 2) . . . (m)

i!
⩽
mi

i!
<
(me
i

)i
.

This result implies that for any given concept class C, its shatter function
can only grow either exponentially or polynomially in terms of m. As the
cardinality of the set increases beyond n, the fraction of subsets of the set
that can be shattered approaches 0.

1.2.2 ε-nets and the VC theorem

The next sections lie at the intersection of statistics, probability theory and
computer science. Our primary objective is to examine and prove the Vapnik-
Chervonenkis (VC) theorem, a fundamental result in statistical learning the-
ory.

To provide additional context, we present a correspondence between some
statistical and computational concepts, adapted from a widely-used textbook
“All of Statistics: A Concise Course in Statistical Inference” by Wasserman:

Statistics Computer Science Meaning
estimation learning using data to estimate

an unknown quantity
classification supervised learning predicting a discrete Y

from X
large deviation bounds PAC learning uniform bounds on

probability errors

The main goal of this section is the VC theorem, which is a variation
on the theme of large deviation bounds. These bounds, which include the
well-known Chernoff, Hoeffding, and Markov inequalities, provide estimates
for the probability that an average of independent random variables deviates
significantly from its expected value.

To build towards the VC theorem, we will introduce the concept of ϵ-nets.
These are subsets of our sample space that, in a sense, approximate the entire
space well.

Remark 1.14 In this section, we let (X,A, µ) denote a probability space.
Let C be a concept class onX so that each f ∈ C has µ-measurable support, i.e.
for all f ∈ C : supp(f) ∈ A. For each f ∈ C, let µ(f) = µ(supp(f)) =

∫
X fdµ.
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In other words, µ(f) is the µ-probability that, given a ∈ X, f(a) = 1. For any
n < ω we consider the product measure of µ on Xn, which we will denote by
µn.

Lemma 1.15 (Lemma 2.3.4, [Gui13]) Let C be a PAC learnable concept
class on X and let H be a learning function for f ∈ C with sample complexity
Nε,δ. Then, for all ε ∈ (0, 1), δ ∈ (0, 1), probability measures µ on X, and
n ⩾ Nε,δ,

E(a 7→ errµ(H, f, a)) ⩽ δ + ε(1− δ).

Proof Let Y0 = {a ∈ Xn : errµ(H, f, a) > ε}. Let Y1 = X \ Y0. By
definition, since C is PAC learnable, the probability of sampling a ∈ Y0 with
error > ε is less than δ, so

E(a 7→ errµ(H, f, a)) =

∫
Xn

errµ(H, f,−)dµn

⩽
∫
Y0

errµ(H, f,−)dµn +

∫
Y1

errµ(H, f,−)dµn

⩽ 1 · µn(Y0) + ε · µn(Y1)
⩽ δ + ε(1− δ).

Definition 1.16 (Definition 2.2.6, [Gui13]) For ε ∈ (0, 1), a subset N ⊆
X is called an ε-net for C if for every f ∈ C with µ(f) = µ(supp(f)) ⩾ ε,
there exists a ∈ N such that f(a) = 1.

Intuitively, an ε-net intersects every function f ∈ C whose support has
µ-measure at least ε. This allows it to serve as an approximation of X with
respect to C capturing all the “large” sets.

Fact 1.17 (Chebyshev’s inequality) If f : X → R is a random variable
and ε > 0, then

µ ({a ∈ X : |f(a)− E(f)| ⩾ ε}) ⩽ Var(f)

ε2
.

Lemma 1.18 (Lemma 2.2.5, [Gui13]) Fix p ∈ [0, 1] and finite n ⩾ 8
p . Let

(f0, . . . , fn−1) ∈ X2 such that µ(fi) = p for all i < n. Then,

µ

({
(a1, . . . , an) ∈ Xn :

n∑
i=1

fi(ai) ⩽
1

2
np

})
⩽

1

2
.

Proof Define f : Xn → R as f(a1, . . . , an) =
∑n

i=1 fi(ai). The expected
value of f is equal to E(f) =

∑n
i=1 E(fi) = np and the variance of f is equal

11



to Var(f) =
∑n

i=1Var(f) = np(1− p). Applying Fact 1.17 with ε = np/2, we
get:

µ
({
a ∈ Xn : |f(a)− np| ⩾ np

2

})
⩽
np(1− p)
(np/2)2

=
4(1− p)
np

⩽
4

np

⩽
1

2
.

Therefore, the µ-probability of f(a) ̸∈
(
np
2 ,

3np
2

)
is at most 1

2 . Consequently,

the probability of f(a) ̸∈ (np2 ,∞) is also at most 1
2 , which proves the lemma.

The goal now is to show that with high probability, a randomly chosen set
of points forms an ε-net for C.

Theorem 1.3 (VC Theorem 2.2.7, [Gui13]) Let (X,B, µ) be a probabil-
ity space, C be a concept class on X with each concept having µ-measurable
support, d, n < ω and ε ∈ (0, 1). If the VC dimension of C is ⩽ d, then

µ({a ∈ Xn : {a1, . . . , an} is not an ε-net for C}) ⩽ 2(2n)d2−
εn
2 .

Proof The proof consists of two main parts: first, we define sets to char-
acterize “bad” samples and derive an estimate, and second, we compute an
upper bound on this estimate.

We start with the first part:

• Without loss of generality, we can assume C = {f ∈ C : µ(f) ⩾ ε}, as
functions with measure less than ε do not need to be witnessed by a.

• Define Y0 = {a ∈ Xn : (∃f ∈ C)(∀i ⩽ n)(f(ai) = 0)}. This set
represents all samples a that fail to be an ε-net. Our goal is to show
that µ(Y0) is small.

We will set up a “coupling” argument to bound µ(Y0) in terms of µ-measure
of another set:

• For each f ∈ C define

Yf =

{
a ∈ X2n : (∀i ⩽ n)(f(ai) = 0) ∧

2n∑
i=n+1

f(ai) ⩾
εn

2

}
.

This set represents all 2n-tuples where f assigns 0 to the first n elements
and 1 to at least ⌈εn/2⌉ of the remaining n elements.

12



• Let Y1 =
⋃

f∈C Yf . This set can be seen as a product Y0 × Yεn/2, where
Yεn/2 denotes all a’s where f has sufficiently big empirical measure.

• For any a ∈ Xn define the “section” of Y1 corresponding to a, that is
Y1|a = {b ∈ Xn : (a, b) ∈ Y1}. A measure-theory inclined

reader might remember: If
X = A×B is a measurable
rectangle, then every A
section is either B or ∅,
according to whether x ∈ A
or not.

– If a ∈ Y0, then straightforward application of Lemma 1.18 with
p = ε yields:

µ

({
(a1, . . . , an) ∈ Xn :

n∑
i=1

fi(ai) >
1

2
nε

})
⩾

1

2
.

The left-hand side of this inequality is precisely µ(Y1|a), therefore
µ(Y1|a) ⩾ 1/2.

– If a ̸∈ Y0, then µ(Y1|a) = 0, as the first condition of Yf fails.
– This implies

µ(Y1) =

∫
Y0

µ(Y1|a)dµ(a) ⩾
1

2

∫
Y0

dµ(a) =
1

2
µ(Y0).

Therefore, µ(Y0) ⩽ 2µ(Y1). So, to bound µ(Y0), it suffices to com-
pute an upper bound for µ(Y1).

Now the second part:

• Consider the product space X2n×
(
2n
n

)
with the product measure µ⊗ ν

where ν is the uniform probability measure on
(
2n
n

)
.

– X2n is the set of 2n-sequences (a0, . . . , a2n−1) ⊆ X2n,
–
(
2n
n

)
denotes the set of n-element subsets of 2n.

– For I ⊆
(
2n
n

)
, let σ|I : 2n→ 2n be the permutation that maps I to

{0, 1, . . . , n− 1} and its complement to {n, n+ 1, . . . , 2n− 1}.
– For a ∈ X2n and I ∈

(
2n
n

)
, define aI = (aσ(0), . . . , aσ(2n−1)).

• Fix a ∈ X2n and f ∈ C. We compute the probability that aI ∈ Yf for
some I ∈

(
2n
n

)
.

– If
∑2n−1

i=0 f(ai) <
εn
2 , then aI ̸∈ Yf no matter how we choose I

because it is impossible to satisfy the second condition of Yf .
– If

∑
i⩽2n f(ai) ⩾

εn
2 ., then I must index elements where f(ai) = 0

and avoid elements with f(ai) = 1 because of the first condition of
Yf . By assumption, we have at least k = ⌈ εn2 ⌉ to avoid. Thus, the
probability that aI ∈ Yf is at most

(
2n−k
n

)(
2n
n

) =

(2n− k)!

n!(n− k)!

(2n)!

n!n!

=
(2n− k)!

(2n)!
· n!

(n− k)!
=

(n− k + 1) . . . (n)

(2n− k + 1) . . . (2n)
.
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Factoring out 2 from the denominator we can estimate each factor
as less than 1

2 , thus

(n− k + 1) . . . (n)

(2n− k + 1) . . . (2n)
⩽

(
1

2

)k

⩽

(
1

2

) εn
2

= 2−
εn
2 .

Hence 2−
εn
2 is the upper bound for aI ∈ Yf .

Now, we use the VC dimension to bound µ(Y1):

• Since C has VC dimension ⩽ d, by Lemma 1.11, πC(2n) ⩽ Φd(2n).
Therefore, for a fixed a ∈ X2n,

|{I ⊆ 2n : (∃f ∈ C : f cuts out ai∈I)}| ⩽ Φd(2n) ⩽ (2n)d.

Therefore, for any a ∈ X2n, the probability µ(aI ∈ Y1) ⩽ (2n)d2−
εn
2 .

This implies µ(Y1) ⩽ (2n)d2−
εn
2 .

Finally, we conclude µ(Y0) < 2(2n)d2−
εn
2 , which proves the theorem.

Remark 1.19 Exact measurability conditions are discussed in the appendix
A1 and A2 of [Blu+89].

The VC Theorem provides a bound on the convergence of empirical mea-
sures to true measures uniformly over a class of sets (or functions), where the
uniformity is controlled by the VC dimension.

1.2.3 Proof of the fundamental theorem of PAC learning

In this section, we prove the main theorem:

Theorem 1.4 (Theorem 2.1, [Blu+89]) Let X be a set and C a concept
class on X. Then, the following are equivalent:

a) C is a VC class.

b) C is PAC learnable.

This theorem establishes that if the complexity measure of C (as measured
by its VC dimension) is bounded, we can efficiently learn it by sampling data
from X, independent of any other assumptions.

We prove this theorem by explicitly calculating a lower and an upper
bound on the sample complexity Nε,δ in Theorem 1.5 and Theorem 1.6.

Theorem 1.5 (Lower bound) Let d < ω such that VCdim(C) ⩾ d. Then,
any hypothesis function H : Cfin → X2 that is a witness to PAC learnability
of C has sample complexity

Nε,δ ⩾ d(1− 2(ε(1− δ) + δ)).
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Theorem 1.6 (Upper bound) Let d < ω such that VCdim(C) ⩽ d. Then,
any consistent hypothesis function H : Cfin → C is a learning function for C
with sample complexity

Nε,δ ⩽ max

(
4

ε
log

(
2

δ

)
,
8d

ε
log

(
13

ε

))
.

Fact 1.20 Let (X,A, µ) and (Y,B, γ) be two probability spaces and f : (X×
Y ) → R a random variable on the product space. Then, there exists a ∈ X
such that f |a : Y → R, where f |a(b) = f(a, b), such that

E(f |a) ⩾ E(f)

Proof (Theorem 1.5) Let H : Cfin → X2 be any hypothesis function wit-
nessing PAC learnability of C. Our goal is to compute a lower bound on the
expected value of hypothesis function error errµ(H, f, a) in terms of d and n,
and then leverage Lemma 1.15 to extract a lower bound on Nε,δ.

• We begin by analyzing the hypothesis function error on X ×C, viewing
it as a function in two variables (a, f) 7→ errµ(H, f, a). To find a lower
bound on the expected value of errµ(H, f, a), we consider the integral

E(errµ(H, f, a)) =
∫
Xn×C

errµ(H, f, a)dµ((a, f)).

– Since C is PAC learnable, we can choose any probability measure µ
on X and on C. We opt for the uniform probability measure, which
implies that for a ∈ X : µ({a}) = 1/d and for f ∈ C : µ({f}) =
1/2d.

– Since C has VC-dimension ⩾ d, there exists a subset of X with
cardinality d that is shattered by C. By restricting the measure to
this shattered set, we may assume |X| = d and C = X2.

– Since H is consistent by Remark 1.2, given sample Y ⊆ X, we can
restrict the domain of the error function to the “unseen” subset
(X \ Y ) ⊆ Xn.

– These reductions allow us to simplify the integral above to

E(errµ(H, f, a)) =
(

1

d · 2d

) ∑
(a,f)∈(X\Y )×C

errµ(H, f, a)

 .

• Now, we compute a lower bound of the expected value.
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– Fix n ⩽ d and consider sequences a = (a1, . . . , an) ∈ Xn. Define
Y = {a1, . . . , ak}, the set of distinct values of a, noting that |Y | =
k ⩽ n.

– By Theorem 1.1(1), C shatters Y ⊆ X so C|Y = Y 2. For any fixed
concept g ∈ Y 2, it can be extended to a function in C in 2d−k ways.

1 ⩽ k ⩽ n < d ⩽ VCdim(C)

– For a fixed x ∈ (X \ Y ), by symmetry, exactly half of f ∈ C which
extend g will disagree with H(g) on x. Summing over all possible
elements x ∈ X \ Y , we have:∑
x∈X\Y

∣∣∣∣{∣∣H(g)(b)− f(b)
∣∣ : b ∈ X, f ∈ X2

}∣∣∣∣ ⩾ 1

2

(
2d−k

)
(d− k) .

– Since | Y 2| = 2k, over all possible concepts g ∈ Y 2 we get:

2k∑
i=1

{∣∣H(f |Y )(b)− f(b)
∣∣ : b ∈ X, f ∈ X2

}
⩾

1

2
2d (d− k) ⩾ 1

2
2d (d− n) .

– Thus, we arrive at the lower bound:

E(errµ(H, f, a)) ⩾
1

d · 2d
· 1
2
2d (d− n) = d− n

2d
.

• We can now leverage this lower bound to obtain a lower bound on Nε,δ.

– By Fact 1.20, there exists f ∈ C with E(a 7→ errµ(H, f, a)) ⩾ d−n
2d .

– By Lemma 1.15, E(a 7→ errµ(H, f, a)) ⩽ ε(1− δ) + δ.

– Since Nε,δ must hold for any probability measure, it must hold
specifically for µ. Therefore, we conclude that Nε,δ ⩾ d(1−2(ε(1−
δ) + δ)).

Now we prove the other direction, i.e. Theorem 1.6 using ε-nets and the
VC Theorem 1.3.

Proof (Theorem 1.6) The key idea of the proof is to use ε-nets to show
that a consistent hypothesis function H can PAC learn a concept class C with
finite VC dimension. This approach is somewhat consistent with the principle
of Occam’s Razor — a short explanation (i.e. a hypothesis function that is
as simple as possible) tends to be more valid than a long explanation.

• Fix a target concept f ∈ C and a sample a ∈ Xn.
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– For any prediction h = H(f |a) ∈ C, the error function |h − f |
belongs to concept class (C △ f). Therefore we can describe the
error in terms of the µ-measure of |f − h|, namely errµ(H, f, a) =
µ (|f − h|) .

– By Theorem 1.2(4), (C △ f) has VC dimension d.

• By the VC Theorem 1.3, we can estimate the probability of a failing to
be an ε-net, independent of µ:

µ
({
a ∈ Xn : {a1, . . . , an} not an ε-net for (C △ f)

})
⩽ 2

(
2
en

d

)d

2−
εn
2 ,

Here we use a sharper bound ( end )d on the shatter function’s growth
rate, as shown in Corollary 1.12.

• We need to choose n large enough so that:

2

(
2
en

d

)d

2−
εn
2 ⩽ δ

⇐⇒ log(2) + d log

(
2
en

d

)
⩽ log(δ) +

εn

2

⇐⇒ εn

2
⩾ d log

(
2
en

d

)
+ log(

2

δ
).

We choose n ⩾ max

{
4
ε log

(
2
δ

)
, 8dε log

(
13
ε

)}
and split the inequality

in two parts:

εn

4
⩾ log(

2

δ
) and

εn

4
⩾ d log

(
2
en

d

)
.

– The first inequality holds trivially by our choice of n ⩾ 4
ε log(

2
δ ).

– The second inequality holds for all m > n if we can prove it for the
lower bound n ⩾ 8d

ε log
(
13
ε

)
, implying εn

4 ⩾ 2d log
(
13
ε

)
. so the

inequality holds if we can prove

2 log

(
13

ε

)
⩾ log

(
16

(
e

ε

)
log

(
13

ε

))

⇐⇒
(
13

ε

)2

⩾
16e

ε
log

(
13

ε

)
⇐⇒ 132

16eε
⩾ log

(
13

ε

)
.

This inequality holds for ε = 1 and all smaller values, completing
the proof.
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• Conclusion:

– We have proven that for n ⩾ max{4ε log
(
2
δ

)
, 8dε log

(
13
ε

)
}, a ∈ Xn

is an ε-net for (C △ f) with probability greater than 1− δ.
– If errµ(H, f, a) ⩾ ε, then by definition of an ε-net, a “catches” some
ai ∈ X such that f(ai) ̸= h(ai).

– This contradicts consistency of H, therefore

µ
({
a ∈ Xn : errµ(H, f, a) > ε

})
< 2(2n)d2−

εn
2 ⩽ δ.

Proof (Theorem 1.4) We prove both directions of the equivalence:

=⇒ : Suppose C is a VC class. By definition, there exists d < ω such that
VCdim(C) = d. By Theorem 1.6, any consistent hypothesis function H
is a PAC learning function for C. Therefore, C is PAC learnable.

⇐= : Suppose C is not a VC class. Then C has infinite VC dimension. By
Theorem 1.5, for any hypothesis function H and VC dimension d ∈ N,
the sample complexity satisfies Nε,δ ⩾ d(1− 2(ε(1− δ) + δ)). Since the
VC dimension of C is infinite, no finite sample size is sufficient for PAC
learning C. Therefore, C is not PAC learnable.
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1.3 NIP theories

Now we move into the realm of model theory.

Remark 1.21 (Notation) We will work in a fixed signature L.

• M denotes an L-structure with universe M .

• x, y, z represent tuples of variables,

• |x| denotes the length of tuple x.

• For A ⊆M , Ax represents all tuples from A of length |x|.

In a partitioned L-formula φ(x; y)

• x represents object variables,

• y represents parameter variables,

• for b ∈My, A ⊆Mx define φ(A, b) = {x ∈ A :M |= φ(x, b)},

• for A ⊆Mx and B ⊆My define φ(A;B) = {φ(a;B) : a ∈ A}.

Definition 1.22 (Uniformly definable family) LetM be an L-structure
and φ(x; y) any fixed L-formula. The formula φ(x; y) generates a uniformly
definable family on Mx as a collection of definable sets:

Cφ = {φ(Mx; b) : b ∈My}.

The VC dimension of φ(x; y) is defined to be the VC dimension of the induced
concept class Cφ.

The term “uniformly definable” emphasizes that a single formula φ simul-
taneously defines all sets within the family, instead of using multiple formulas
to define different sets. This uniformity allows us to study properties of the
entire family by analyzing the single formula φ.

Example 1.23 Consider RCF , the theory of ordered real closed fields. Let
φ(x1, x2; y1, y2, y3) be the formula:

(x1 − y1)2 + (x2 − y2)2 < y3

This formula defines the interior of a circle in R2. Specifically, φ(x1, x2; y1, y2, y3)
generates the family of sets

Cφ = {{(x1, x2) ∈ R2 : (x1 − a)2 + (x2 − b)2 < r} : a, b, r ∈ R}

Each set in this family is the interior of a circle with center (a, b) and radius√
r. The corresponding concept class consists of indicator functions:

C = {fa,b,r : R2 → 0, 1 | a, b, r ∈ R, r > 0}
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where

fa,b,r(x1, x2) =

{
1 if (x1 − a)2 + (x2 − b)2 < r

0 otherwise

Thus, φ uniformly defines all open circles in R2, allowing us to study properties
of this entire family through the single formula φ.

Definition 1.24 (Independence property)

• A formula φ(x; y) has the independence property with respect toM, if:

– For every n ∈ N, there exists a sequence (b0, . . . , bn−1) of elements
from My such that

– For every k ⊆ n, there exists is an ak ∈Mx such that i < k < n

M |= φ(ak; bi) ⇐⇒ i ∈ k

• The independence dimension I(φ) is defined as:

– If φ does not have the independence property (is NIP), then I(φ)
is the greatest n for which the above condition holds.

– If φ has the independence property (is not NIP), then I(φ) =∞.

• The dual formula ψ(y;x) represents a dual formula; φ and ψ are iden-
tical as formulas but the roles of x and y are reversed.

Our main theorem is Proposition 1.3 from [Las92] establishing the equiv-
alence between the independence property and VC dimension.

From now on, fix a structure M and a formula φ(x; y). Let Cφ be the
concept class associated with φ inM.

Theorem 1.7 (Prop. 1.3, [Las92]) If VC dimension of Cφ is d and the
independence dimension of φ is n then n ⩽ 2d and d ⩽ 2n, and the following
are equivalent:

a) Cφ is a VC class.

b) φ is NIP.

This theorem will immediately follow from two lemmas below.

Lemma 1.25 (Lemma 1.4, [Las92]) Let ψ(y;x) be the dual formula of φ(x; y).
Then VCdim(Cφ) ⩽ d ⇐⇒ I(ψ) ⩽ d

Proof We will show that VCdim(Cφ) > d ⇐⇒ I(ψ) > d, which is equiva-
lent to the statement of the lemma.
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• By definition, VCdim(Cφ) > d if and only if there exists a set A =
{a0, . . . , ad} ⊆Mx that is shattered by Cφ. This holds if and only if for
every S ⊆ d, there exists bS ∈My such that:

M |= φ(ai; bS) ⇐⇒ i ∈ S.

• By the definition of the dual formula ψ, this condition is equivalent to:

M |= ψ(bS ; ai) ⇐⇒ i ∈ S

This last statement is precisely the definition of I(ψ) > d. Therefore, VCdim(Cφ) >
d ⇐⇒ I(ψ) > d, which completes the proof.

Lemma 1.26 (Lemma 1.5, [Las92]) Let ψ(y;x) be the dual formula of φ(x; y).
If I(φ) ⩽ n then I(ψ) ⩽ 2n.

The idea of the proof rests on the observation that a shattered set of size
n corresponds to 2n parameters that shatter it. Each element in this set
implicitly defines a subset of these parameters — those corresponding to sets
containing that element.

Proof We prove the contrapositive: I(ψ) > 2n =⇒ I(φ) > n.

• Since I(ψ) > 2n, there exict sequences {bi : i ∈ 2n} and {ak : k ⊆ 2n}
such that for all i ∈ 2n and k ⊆ 2n: M |= ψ(ak, bi) ⇐⇒ i ∈ k

• Dualizing ψ to φ, we obtain: M |= φ(bi, ak) ⇐⇒ i ∈ k. Note that
i ∈ 2n is a number and k ⊆ 2n a subset.

• To obtain I(φ) > n, we need to reverse these roles:

– For each i ∈ n, define ki = {l ⊆ n : i ∈ l}, the set of all subsets of
n containing i.

– For each i ∈ n, define ci = aki .

• Now we can show that for all i ∈ n and k ⊆ n:

M |= φ(bi; ck) ⇐⇒ M |= φ(bi; aki) ⇐⇒ ki ∈ i

– Now bi encodes a subset of n and ki ∈ n a number.
– The first equivalence holds by definition of ck.
– The second equivalence holds because i ∈ ki ⇐⇒ i ∈ k.

• Therefore, the sequence (ck : k ⊆ n) demonstrates that I(φ) > n, as it
satisfies the independence property for φ with respect to the sequence
(bi : i ∈ n).
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By contraposition, we conclude that if I(φ) ⩽ n, then I(ψ) ⩽ 2n, proving the
lemma.

Proof (Theorem 1.7) We will prove both directions of the equivalence.

a) =⇒ b) Assume Cφ is a VC class, so VCdim(Cφ) = d <∞.

– By Lemma 1.25, VCdim(Cφ) = d ⇐⇒ I(ψ) ⩽ d.
– Applying Lemma 1.26 to ψ, we get I(φ) ⩽ 2d <∞.
– Thus, I(φ) ⩽ 2d, implying φ has finite independence dimension

and is NIP.

b) ⇐= a) Assume φ is NIP, so I(φ) = n <∞.

– By Lemma 1.26, I(φ) = n =⇒ I(ψ) ⩽ 2n.
– Applying Lemma 1.25, we get VCdim(Cφ) ⩽ 2n <∞.
– Thus, VCdim(Cφ) ⩽ 2n, implying Cφ has finite VC dimension and

is a VC class.

Definition 1.27 (Independence property for theories) A theory is NIP
if and only if every formula is NIP.

This implication establishes that any formula in a NIP theory, as well as
finite boolean combinations of such formulas, has a finite VC dimension. As a
direct consequence, these formulas (uniformly) define PAC learnable concept
classes, significantly expanding our understanding of learnable concept classes.
Model theory provides us with lots of interesting NIP theories, all of which are
now known to be PAC learnable. This also recovers many standard computer
science results, including halfspaces, threshold functions, circles, and convex
n-gons, albeit without explicit bounds. We give more examples at the end of
the Section 2.3.2.
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2 Littlestone dimension and stable theories

2.1 Online learning framework

Unlike the previously discussed PAC learning model, which relies on a set
of training examples to develop a hypothesis before applying it to new data,
online learning operates in a dynamic, sequential manner. The online learning
process can be thought of as a game between two players: the learner and
the environment. This game proceeds over a series of rounds, each of which
follows a particular pattern:

1) The environment selects an instance xi.

2) The learner predicts a label h(xi) ∈ 2.

3) The environment reveals the true label f(xi) ∈ 2.

In this framework, the goal of the environment is to challenge the learner
by selecting instances that lead to errors. To achieve this, the environment
must select yi = 1 − h(xi) for each round. However, the environment faces
a constraint: it must select instances in a way that is consistent with the
hypothesis class C, ensuring that the target concept remains within that class.

As noted in the Remark 1.2 about consistent and realizable learning, we
will focus our attention on scenarios where the online learning process is both
consistent and realizable. The complexity of the online learning task varies
significantly depending on the hypothesis class C:

• In the most challenging case, where C = X2, the learner has no chance
of consistently predicting the correct label.

• In the simplest case, where C = {f}, the environment has no flexibility
in choosing instances that would lead the learner to make errors.

Between these extremes lies a spectrum of hypothesis classes with vary-
ing degrees of complexity. The study of online learning aims to understand
how the structure of the hypothesis class affects the learner’s ability to make
accurate predictions and the environment’s ability to present challenging in-
stances.

The next several definitions formally describe the learning process and
introduce the concepts of binary trees and their labelings. In these binary
trees, which we will refer to as mistake trees in the context of online learning,
each internal node is associated with a sample xi from the input space, while
the external nodes (leaves) correspond to functions f from the concept class.
Each path through the tree represents a sequence of choices made by the
environment. Branching left corresponds to choosing 1, while branching right
corresponds to choosing 0. A labeling represents a valid assignment of xi ∈
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X and f ∈ C to nodes in the tree. This tree structure provides a visual
representation of the potential trajectories of the learning process.

The notation and terminology in this section follows [Bha21].

Definition 2.1 (Trees for learning problems) Given a learning problem
(X, C), we define the following terms:

• A binary tree is either a single leaf or a pair of subtrees.

• A binary element tree, denoted by T , is a rooted binary tree with nodes
partitioned into leaves L ⊆ T and non-leaves N ⊆ T . The leaves L are
labeled with elements from C, and the non-leaves N are labeled with
elements from X.

• A perfect binary element tree, denoted by Bn, is a binary element tree
T in which every non-leaf has exactly two children, and all leaves are
located at the same level n.

Our definition of a binary tree allows for both finite trees and infinite trees
of depth ω (and defines a coinductive datatype). In a traditional set-theoretic
approach, a tree T would typically be defined as a nonempty prefix-closed
subset of 2<ω such that for every u ∈ 2ω, u0 ∈ T ⇐⇒ u1 ∈ T .

Despite our formal definition, we can still intuitively imagine a tree as a
set of nodes, one of which is a root, some of which are leaves, and the set is
equipped with a partial order that defines the ancestry relationship.

Definition 2.2 (Order relation on trees) We define a partial order rela-
tion on nodes of an ordered tree T . For any nodes u, v ∈ T , we say At a casual glance, one

might mistakenly interpret
u < v as u being below v,
whereas in this context, v is
actually lower than u.
Rather, one should imagine
u < (literally) as a root of a
subtree represented by the
symbol <.

• node v is below node u, denoted by u < v, if u ̸= v and v is contained
in the subtree with root u,

• node v is left below u, denoted by u <L v, if v is contained in the left
subtree of u,

• node v is right below u, denoted by u <R v if v is contained in the right
subtree of u.

Unordered trees will
become relevant later in the
context of model theory. In
the contex of online
learning we will focus on
ordered trees.

We analogously define the notion of above, left above and right above.
For an unordered tree T , where we cannot distinguish between left and right
nodes, we instead define

• v ∼u w if v, w lie in the same subtree of u,

• v ⊥u w if v, w lie in different subtrees of u.

Definition 2.3 (Tree embedding & dimension)

• an embedding of tree T1 into the tree T2 is an injection of nodes in T1
into nodes in T2 preserving the order structure given by <L and <R or
by <,∼,⊥ relations.
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• the dimension d of a tree is the largest n such that Bn can be embedded
into T or ∞ if there are arbitrarily large such trees.

In the definition 2.1 we split tree T in leaves and non-leaves labeled by
elements from C andX, respectively. We now describe properties, constituting
a valid labeling of T .

Definition 2.4 (Labelings of trees) For an ordered tree T , a labeling α :
T → X ∪ C is valid if:

• α consists of two disjoint injective maps N → X,L→ C and

• for every leaf v ∈ L the following conditions are satisfied:

– if u <L v, then α(v)(u) = 1,

– if u <R v, then α(v)(u) = 0.

For an unordered tree T , a labeling α : T → X ∪ C is valid if:

• α consists of two disjoint maps N → X,L→ C and

• for every non-leaf u and leaves v, w ∈ L the following holds:

– if v ∼u w, then α(v)(u) = α(w)(u),

– if v ⊥u w, then α(v)(u) ̸= α(w)(u).

No requirements are imposed on other nodes where the order relation may be
undefined. In some situations, if the labeling N → X is already given and we
can extend it to a valid labeling, we say that T is labeled by C or C shatters
T or T admits C.

The concept of a tree admitting C or being shattered by C is particularly
important. It means that the concept class is rich enough to realize all the
classifications represented by the leaves of the tree, given the feature tests
at the internal nodes. In other words, this means that the concept class has
enough expressiveness to be consistent with the decision strategy represented
by the tree structure.

2.2 Littlestone dimension and SOA

This section follows [Lit88].

Definition 2.5 (Littlestone dimension) The Littlestone dimension of C,
denoted as Ldim(C), is the largest n such that C shatters Bn. If C shatters
arbitrarily large finite Bn, then Ldim(C) = ∞. If C shatters no Bn, then
Ldim(C) = −∞.
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The Littlestone dimension of a concept class thus represents the maximum
number of errors that the environment can force any learning algorithm to
make in that scenario. This dimension provides a worst-case bound on the
number of prediction errors that must be made when learning any concept
from the class. A higher Littlestone dimension indicates a more complex
concept class, which is inherently more difficult to learn in an online setting.

Remark 2.6 Littlestone dimension is a weaker notion of dimension than VC
dimension. We offer three complementary perspectives:

• For a leaf v in a binary tree, define P (v) as the set of nodes on the
path from the root to v, where PL(v) and PR(v) represent left and right
turns, respectively. A concept class C shatters a tree if, for each leaf v,
there exists f ∈ C such that f−1(1) ∩ P (v) = PL(v). This definition is
weaker than its VC analog because it requires f to cut out PL(v) from
P (v) and not from the entire input space X. In essence, we restrict
the input space X to P (v) for each leaf v, and make no requirements
about how concepts should behave on nodes outside of these root-to-leaf
paths.

• The Littlestone dimension becomes equivalent to the VC dimension if
we require that internal nodes at the same level have x ∈ X. This
shows that the VC dimension serves as a lower bound on the Littlestone
dimension, a statement we will prove later in Lemma 2.10.

• As shown in the previous section, all concept classes with finite VC
dimension correspond to NIP formulas. This section will establish that
finite Littlestone dimension is equivalent to a formula being stable. This
connection will not surprise readers familiar with stability theory, as
stable theories are a subclass of NIP theories.

Definition 2.7 (Thicket shatter function) We count the maximum
number of leaves labeled
correctly.

Define the thicket shatter func-
tion ρC(m) : N→ N as

ρC(m) := max{|L| : L ⊆ T, C shatters Bm}.

The Sauer-Shelah lemma 1.11 also holds verbatim for the thicket shatter
function ρC(m).

Lemma 2.8 (Sauer-Shelah lemma, 1972) Let Φn(m) :=
∑n

i=0

(
m
i

)
. If

C has Littlestone dimension n and m > n, then ρC(m) ⩽ Φn(m) and, in
particular, ρC(m) ∈ O(mn).

Proof The proof is lengthy and inductive, offering limited insight, so we
omit it and refer the reader to the proof of Theorem 4.2 in [Bha21].
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Definition 2.9 (Mistake bound) Let f ∈ C be a target concept and H
a hypothesis function. We define the mistake bound mis(H, f, a), as the
maximum number of mistakes H makes predicting f on the sequence a =
{a0, . . . , an−1}.

From now on fix a concept class C with Littlestone dimension d.

Theorem 2.1 (Lemma 1, [Lit88]) The number of mistakes of any deter-
ministic algorithm H is at least d.

Proof By Definition 2.5, C shatters a perfect mistake tree Bd. We will
show that an adversarial environment can force any deterministic learning
algorithm to make at least d mistakes:

• Present the instances xi to the learner in the order they appear along a
path from the root to a leaf in Bd.

• For each prediction h(xi) made by the learner, assign the opposite truth
value 1− h(xi) to the instance.

This strategy ensures that the learner makes a mistake on every prediction
and there always exists a hypothesis f ∈ C consistent with all the assigned
labels, due to the tree being shattered. Since the height of the tree is d, the
adversary can force the learner to make at least d mistakes before reaching a
leaf. This holds true regardless of the specific algorithm used by the learner,
as long as it is deterministic. Therefore, the number of mistakes of any deter-
ministic algorithm on the concept class C is at least d, which is the Littlestone
dimension of C.

Theorem 2.2 (Algorithm 2 and Theorem 3, [Lit88])

There exists an algorithm H that makes at most d mistakes. The algorithm
H is usually refered to as the Standard Optimal Algorithm (SOA).

Proof We provide a constructive proof by describing the Standard Optimal
Algorithm (SOA) and demonstrating its optimality.

• The algorithm: The algorithm proceeds in rounds, maintaining a hy-
pothesis class Vi in each round i.

– Initialization: Set V0 = C.
– For each round i:

∗ Receive xi ∈ X.
∗ Partition Vi into two subclasses:

V 0
i := {f ∈ Vi : f(xi) = 0} and V 1

i := {f ∈ Vi : f(xi) = 1},

Vi = V 0
i ∪ V 1

i

From a computational
perspective, the
computation of both VC
dimension and Littlestone
dimension is NP-hard.
Furthermore, there is no
polynomial-time algorithm
that can approximate either
of these dimensions to
within a factor of o(logn),
see arXiv:2211.01443.
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∗ Choose prediction pi = argmaxj∈{0,1} Ldim(V j
i ).

∗ Receive true label yi.
∗ Update Vi+1 = V yi

i .

It should be noted that if Ldim(V 0
i ) ̸= Ldim(V 1

i ), then yi = 1−pi unless
the environment is adversarial and maximizing mistakes, hence the use
of “at most” in the theorem statement.

• The optimality: We prove that the Littlestone dimension of Vi strictly
decreases in each round, implying that the algorithm makes at most d
mistakes. Proof by contradiction:

– Assume Ldim(Vi+1) ⩾ Ldim(Vi) for some i. Then by construction,
Vi+1 is either V 0

i or V 1
i .

– Since we choose the subclass with greater Littlestone dimension,
both Ldim(V 0

i ) and Ldim(V 1
i ) are greater than or equal to Ldim(Vi).

However, Vi is the union of V 0
i and V 1

i , which leads to the following
inequality:

Ldim(Vi) ⩾ min{Ldim(V 0
i ),Ldim(V 1

i )}+ 1 > Ldim(Vi),

This inequality holds because Vi is a mistake tree that is one level
deeper than the smaller of the mistake trees V 0

i and V 1
i . This

contradiction proves our claim.

Since the Littlestone dimension strictly decreases in each round and is
initially d, the algorithm makes at most d mistakes.

Lemma 2.10 (Theorem 4, [Lit88]) The Littlestone dimension of a con-
cept class C is always greater than or equal to its VC dimension. The equivalent

model-theoretic statement
is: “If φ is stable, then φ is
NIP.”Proof Let d be the VC dimension of C. By definition, there exists a set

A = {a0, . . . , an−1} of size d shattered by C. Construct a perfect binary tree
of height d as follows: We use the elements ai ∈ A as labels for the internal
nodes of the tree. All nodes at depth i are labeled with ai ∈ A. The leaves
of this tree, which are at depth d, are then labeled with functions from C|A.
The resulting tree is shattered by C and has height d. This implies that the
Littlestone dimension of C is at least d.

The lemma we proved demonstrates that the gap between the Littlestone
dimension and the VC dimension of a concept class C is always non-negative.
Moreover, it can be arbitrarily large, as the following example illustrates.

Example 2.11 Let X = [0, 1] and C the class of threshold functions on X.
The VC dimension of C is 2 and the Littlestone dimension is ∞.

To demonstrate that C has infinite Littlestone dimension, we can construct
an infinitely deep binary tree as follows:
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• Consider leaves v1 = 1
2 , v2 =

1
4 , v3 =

1
8 , . . . , vi =

1
2i

• Label each leaf with

hi(x) =

{
1, x ⩾ 1

2i

0, x < 1
2i

For the internal nodes, we can always find values in [0, 1] that are consistent
with the labeling of the leaves. This is possible due to the density of real
numbers.

2.3 Stable theories

The next section is based on Chapter 5 from [Bha21].

2.3.1 Littlestone dimension and Shelah 2-rank

Remark 2.12 (Set systems and learning problems, revised) The fun-
damental objects in this section are set systems.

• A set system (X,F ,∈) is a structure with universe M = X ∪ F , sorts
MX and MF and equipped with a binary relation symbol ∈⊆MX×MF .
For brevity, we will write (X,F), suppresing ∈.

• Any such set system corresponds to a learning problem (X, C), where
X is the input space, C = {1A(x) : A ∈ F} is the concept class. Each
concept or hypothesis function is in correspondence with a set A ∈ F .

Remark 2.13 (Model-theoretic setup) We discuss model-theoretic assump-
tions and preparations we need to make in order to prove the results. We use
typewriter script to distinguish syntactic variables x, y from values x, y.

• In this section, we fix a partitioned first-order formula φ(x; y) and the
induced set system (X,F) with F = {φ(Mx, b) : b ∈My}. The relation
∈ in our set system is interpreted as a ∈ F ⇐⇒ M |= φ(a; b) for the b
that defines F .

• We fix a sufficiently saturated model M of the theory Th(X,F) to en-
sure that all types are realized, which may affect later rank calculations
if, for example, we work in a model which doesn’t realize many types.
Whenever we assert that some sentence holds, we always mean relative
to the modelM.

In our previous discussion (Remark 1.2), we focused on consistent and
realizable cases. To extend this concept into model-theoretic terms, we will
now introduce the notion of partial φ-types.

Definition 2.14 Let φ be the formula x ∈ F. We define:
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• A φ-formula is either φ(x; F) or ¬φ(x; F) for some x ∈Mx. For brevity,
we denote φ(x; F)1 = φ(x; F) and φ(x; F)0 = ¬φ(x; F).

• A finite φ-type p is a conjunction of φ-formulas, including the empty
conjunction ⊤. We denote by p(F) the subfamily of F satisfying the
type p.

• Two finite φ-types p and q are contradictory, if there exists x ∈ X and
t ∈ {0, 1} such that:

– φ(x; F)t ∈ p,
– φ(x; F)1−t ∈ q

In this case, we say p and q disagree on φ(x; F).

How does the notion of a partial φ-type relate to online learning? As we
receive observed data in the form of pairs (xi, yi), where xi ∈ X represents
an instance and yi ∈ 0, 1 represents its label, we can enforce consistency
in our structure (X,F) by requiring either φ(xi; F) or ¬φ(xi; F) to hold in
(X,F), depending on the value of yi. This process effectively restricts our
concept class to only those concepts that agree with the observed data and
the collection of these restrictions is what we now defined as a finite φ-type.
The subfamily of F that satisfies these constraints is written as p(F). This
represents the set of concepts in our class that are consistent with the observed
data so far.

Now, we formalize Definition 2.4 describing conditions under which a tree
T admits (X,F) consistent with a finite φ-type p.

Definition 2.15 (Definition 5.1, [Bha21]) Let T be an unordered tree with
non-leaves N and leaves L. We define

• a signature LT = {∈} ∪ {au : u ∈ N} ∪ {bv : v ∈ L}, where

– ∈ is a binary relation symbol ⊆ X ×F
– au : u ∈ N are constant symbols of sort X
– bv : v ∈ L are constant symbols of sort F

• a first-order LT -theory AdmT
p with the following axioms: For simplicity, we will

occasionally denote the
constants au or bv as the
image α(u) or α(v) of the
respective node under a
valid labeling α.

(1) p(bv) for any v ∈ L,
(2) φ(au; bv) ̸↔ φ(au; bw) if v⊥uw,
(3) φ(au; bv)↔ φ(au; bw) if v ∼u w.

If (X, p(F)) admits T , then Th(X, p(F)) ∪ AdmT
p is consistent. This

means there exists a model which simultaneously satisfies both Th(X,F) and
AdmT

p . SinceM is sufficiently saturated, the consistency of Th(X,F)∪AdmT
p

is equivalent to the admissibility of T inM = (MX , p(MF )).
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Example 2.16 Let X = {1, 2, 3, 4} and F = {{1, 2}, {3, 4}, {1, 3}}. We
consider the structure (X,F) with the signature L = {∈}. The theory of
(X,F) is the set of all first-order L-sentences true in (X,F). For example,
the sentence “there are exactly 3 sets in F” can be expressed as:

∃x1, x2, x3 :

(
3∧

i=1

xi ∈MF

)
∧

(
2∧

i=1

xi ̸= xi+1

)
∧

(
∀y : y ∈MF ∧

3∨
i=1

y = xi

)
.2

Define a partial φ-type p(F) = {¬φ(4; F)}. This implies p(F) = {{1, 2}, {1, 3}}.
Now consider a tree T with one root u and two leaves v, w. We expand

the signature to LT = {∈, au, bv, bw}, where au is a constant symbol of sort
X and bv, bw are constant symbols of sort F . The theory AdmT

p consists of
the following LT -sentences:

{4 ̸∈ bv, 4 ̸∈ bw, au ∈ bv ̸↔ au ∈ bw}.

We will now verify the equivalence between the consistency of Th(X,F) ∪
AdmT

p and T admitting (X,F):

⇐= : If T admits (X, p(F)), then there exists a valid labeling α. In our
example, α is given by α(u) = 3, α(v) = {1, 3}, α(w) = {1, 2}.

– The property (1) holds by construction, since 4 ̸∈ {1, 3} and 4 ̸∈
{1, 2} is both in Th(X,F) and AdmT

p .
– The properties (2) and (3) hold since 3 ∈ {1, 3} and 3 ̸∈ {1, 2}, so

Th(X,F) and AdmT
p are consistent.

=⇒ : If Th(X,F)∪AdmT
p is consistent, then there exists an interpretation in

M of the constants au, bv, bw that satisfies property (1), (2), (3). This
interpretation provides a valid labeling α of T .

– This equivalence doesn’t necessarily hold for infinite trees. To see
why, suppose Th(X,F)∪AdmT

p is consistent. By the Löwenheim-
Skolem theorem, it has a countable model (X ′,F ′). Since T is
infinite, it has 2ω leaves. For T to be admissible in (X ′,F ′), we
would need an injective map from the leaves L to F ′. This is
equivalent to having an injection from 2ω to ω, wihch is impossible.

The moral of the story is that, at least in the finite case, the consistency of
Th(X,F)∪AdmT

p hinges on the existence of a valid labeling α : T → X∪p(F).
This labeling exists only in a sufficiently saturated model where every leaf type
is realized.

In essence, AdmT
p is a formal way of saying that T can be properly labelled

by elements of X and F that satisfy p, in a way that respects the branching
structure of T . This is probably one of the reasons why [Hod97] describes
Shelah 2-rank as the branching index.

2Here x ∈ MF means “x is of sort MF ”.
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Example 2.17 Imagine you are a network engineer working for a large uni-
versity campus. The IT department wants to optimize WiFi coverage across
the campus grounds. They need to understand the actual coverage area of
each WiFi access point, which is theoretically circular and has uniform signal
strength. At point (x, y) = (1, 1) there is signal and at point (x, y) = (3, 3)
there is no signal. Then we can translate the concepts in online learning and
model theory as in Table 1.

Online learning Model theory
Input space: 2D real plane X = R2

Concept: Interior of a circle with
center (y1, y2) and radius y3

φ(x1, x2; y1, y2, y3) := (x1 − y1)2 +
(x2 − y2)2 < y23

Hypothesis class: Circles in R2 F = {1φ(Mx;b) : b ∈ R3}
Labeled examples: (1, 1) is posi-
tive, (3, 3) is negative

p(F) = {φ(1, 1; F),¬φ(3, 3; F)}

Hypothesis class consistent with
observed data

(X, p(F))

Mistake tree T T

Conditions for a mistake tree T to
admit C

AdmT
p

Littlestone dimension Shelah 2-rank

Table 1: Dictionary of terms between online learning and model theory

Now we are ready to define a local version of Morley rank, the Shelah
2-rank.

Definition 2.18 (Shelah 2-rank) For any finite φ-type p(F), define the
Shelah 2-rank Rφ(p)

1) Rφ(p) ⩾ 0 if p is consistent, i.e. there exists some b ∈ MF such that
p(b) holds.

2) For any finite k, Rφ(p) ⩾ k + 1 if there exists a pairwise contradictory
family of types {pi : i < ω} such that Rφ(p ∧ pi) ⩾ k for all i < ω. Some definitions require

only two contradicting
types. The definitions are
equivalent and we will
implicitly prove this later.

3) Rφ(p) =∞ if Rφ(p) ⩾ k for all k < ω.

4) Rφ(p) = −∞ if p is inconsistent.

The second condition in Definition 2.18 allows us to infer the existence of
an additional order structure on types {pi : i < ω}, which can be extracted
as an infinite sequence.

Lemma 2.19 (Lemma 5.6, [Bha21]) Suppose {pi : i < ω} is a sequence of
pairwise contradictory finite φ-types. Then there exists an infinite set S ⊆ ω
such that for any r ∈ S, there exists a ∈ MX , such that for any s > r in S,
pr and ps disagree on φ(a, F).
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Proof We will construct S inductively as follows:

• Let S0 = ω.

• For any Si ⊆ ω let mi be its least element.

– Consider finite φ-type pmi consisting of finitely many formulas
{φ(xi; F)t : i < ω, t ∈ 2}.

– Since any two types are pairwise contradictory, there exists set
Si+1 ⊆ Si \ {mi} such that φ(xi; F)t occurs in p and φ(xi; F)1−t

occurs in infinitely many (pj)j∈Si+1 .

• This construction gives us

– A descending chain of index sets S0 ⊃ S1 ⊃ S2 ⊃ . . .,
– An increasing sequence of indices m0 < m1 < m2 < . . .,
– A sequence of elements x0, x1, x2, . . .

such that

– For all j > i, pmj and pmi disagree (uniformly) on φ(xi, F),
– For each k < i, pmk

and pmi disagree (non-uniformly) on φ(xk, F).

Therefore S = {m0,m1, . . .} has precisely the qualities we seek.

The rank of p(F) is determined by two key factors: its consistency and
its ability to be split into disjoint sets. If p(F) is non-empty, meaning there
exists some F ∈ F that realizes p, its rank is 0. This corresponds to restricting
the concept class C to functions that are consistent with the observed data.
The rank is 1 if there exists some a ∈ MX such that both p ∧ φ(a; F)0 and
φ(a; F)1 are consistent. In this case, we can split p(F) into two disjoint sets
that disagree on φ(a; F). This splitting behavior is analogous to the mistake
trees discussed in the previous section.

The ability to continue this branching process determines the number of
distinct types that φ can exhibit. Each split potentially doubles the number of
types, corresponding to the different ways of extending p consistently. In fact,
this branching behavior is what ultimately determines the number of types φ
exhibits. It is this limitation on infinite branching that characterizes stable
theories as “tame”, distinguishing them from theories where such branching
can proceed without bound.

Definition 2.20 (k-branching trees) Define 0-branching tree as a single
leaf. For k ⩾ 1, the k-branching tree Tk is the unordered binary tree with
subtrees Tk and Tk−1. The dimension of Tk is k. Note, that any Tk contains
a perfect binary tree Bk.
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Figure 2: The infinite 2-branching tree. The spine is indicated by the thick
edge. The vertices of any Tk+1 can be partitioned into the vertices on the
spine, plus countably many copies of Tk.

Theorem 2.3 (Theorem 5.9, [Bha21]) The following conditions are equiv-
alent:

1) Rφ(p) ⩾ k,

2) Th(X,F) ∪AdmTk
p is consistent.

Proof We work in a sufficiently saturated model M of Th(X,F). Since
it is sufficiently saturated, the admissibility of Tk in M is equivalent to the
consistency of Th(X,F) ∪ AdmTk

p , as discussed in Example 2.16. We use
induction:

• Base case: Show that the equivalence holds trivially for k = 0.

– By Definition 2.18, Rφ(p) ⩾ 0 iff there exists some F ∈MF which
satisfies p, that isM |= p(F ).

– By Definition 2.20, T0 consists of a single leaf v and zero non-leaves,
so the labeling α : v 7→ F is valid and equivalent to the consistency
of Th(X,F) ∪AdmT0

p by the discussion in Example 2.16.

Now comes the inductive step, where we assume the equivalence holds for k
and prove it for k + 1.

• Assume Rφ(p) ⩾ k + 1:

– By Definition 2.18, there exists a family of pairwise contradictory
types {pi : i < ω} witnessing Rφ(p) ⩾ k + 1.
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– By Lemma 2.19 there exists an infinite set S ⊆ ω such that {pi :
i ∈ S} also witnesses Rφ(p) ⩾ k + 1, with the following additional
property:

∀r ∈ S : ∃a(r) ∈MX : ∀s > r : pr and ps disagree on a(r).

We can assume without loss of generality that our original family
already has this property. This is because we can relabel the types
pi using only indices from S and discard the unwanted types, re-
sulting in a subfamily that still witnesses Rφ(p) ⩾ k + 1 and has
this additional structure.

– Consider the infinite k+1-branching tree Tk+1. It can be visualized
as consisting of a single infinite spine with countably many copies
of Tk branching off from it. We partition the nodes of Tk+1 as
follows:

∗ The set of non-leaves N is partitioned as

N =

(⋃
i<ω

Ni

)
∪Ns,

where Ni is the set of non-leaves in the i-th copy of Tk and Ns

is the set of vertices along the spine.
∗ The set of leaves L is partitioned as

L =
⋃
i<ω

Li,

where Li is the set of leaves in the i-th copy of Tk.
– By assumption, we have Rφ(p ∧ pi) ⩾ k for each i < ω. Therefore

by inductive hypothesis, Th(X,F)∪AdmTk
p∧pi is consistent for each

i. This implies that each copy of Tk admits a valid labeling αi :
Ni →MX , Li →MF .

– We now construct a labeling α of Tk+1 by combining all valid la-
belings αi. Define α : N ∪ L→MX ∪MF as follows:

∗ For each i < ω and v ∈ Ni ∪ Li let α(v) = αi(v)
∗ For each r < ω and v the r-th node on the spine Ns let α(v) =
a(r)

– We will now verify that α is a valid labeling by checking axioms
(1), (2), and (3) from Definition 2.15:

∗ For any leaf v ∈ L, α(v) satisfies p∧pi for some i, which implies
α(v) satisfies p,

∗ For any two leaves v, w ∈ L and their common ancestor u ∈ N
there are four possible combinations:

u

v

w

· If v, w ∈ Li and u ∈ Ni for some i, the conditions are
inherited from αi.
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· If v, w ∈ Li and u ∈ Ns, then v and w always will be in
the same subtree relative to u and u must be the r-th node
on the spine, r ⩽ i.
Both α(v), α(w) satisfy the type p ∧ pi. By properties,
established in Lemma 2.19, all realizations of pi agree on
all previous nodes a(r) for all r ⩽ i. Therefore,

φ(a(r);α(v))↔ φ(a(r);α(w)).

u

v

w
· If v ∈ Li and w ∈ Lj for i < j and v and w are in the

same subtree relative to u.
Then u must be the r-th node on the spine and r < i.
By properties established in Lemma 2.19, α(v) and α(w)
agree on all previous nodes a(r) for all r < i. Therefore

φ(a(r);α(v))↔ φ(a(r);α(w)).

u

v
w

· If v ∈ Li and w ∈ Lj for i < j and v and w are in different
subtrees relative to u.
Then u is the r-th node on the spine and r = i. Yet again,
by properties established in Lemma 2.19, α(v) and α(w)
disagree on a(i), therefore

φ(a(i);α(v)) ̸↔ φ(a(i);α(w)).

– We have now proven that α is a valid labeling of Tk+1 and since
M is sufficiently saturated it is equivalent to Th(X,F)∪AdmTk+1

p

being consistent. This concludes the forward direction.

• Assume Th(X,F) ∪Adm
Tk+1
p is consistent inM.

– By discussion in Example 2.16, (X, p(F)) admits Tk+1. This is
equivalent to the existence of a valid labeling α : Tk+1 → X ∪p(F)
satisfying axioms (1), (2), (3) of Definition 2.15.

u

v
w

– Let Ns, Ni, Li be as discussed above and let a(i) be the label of the
i-th node along the spine.

– By axiom (2), for each i < ω, all leaves v in i-th copy of Tk must
agree on the truth value of φ(a(i);α(v)), since for any two such
leaves v, w, we have v ∼a(i) w.

– For i < ω, define

pi = {φt(a(i),F)} ∪ {φ1−t(a(i′),F) : i′ < i},

where t ∈ {0, 1} is chosen such that φt(a(i), F) is satisfied by the
leaves in the i-th copy of Tk.
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– For each i < ω, consider the restriction α|T i
k

of α to the i-th copy
of Tk. This restriction inherits properties (2) and (3) from the
original labeling α. For property (1), observe that for each v ∈ Li,
α(v) satisfies p ∧ pi by construction of pi.

– By the inductive hypothesis, this implies Rφ(p ∧ pi) ⩾ k for each
i < ω. Note that for each i < j, pi and pj disagree on φ(a(i); F).
Thus, {pi : i < ω} forms a pairwise contradictory family of types.
By Definition 2.18, the existence of this family with Rφ(p∧pi) ⩾ k
implies Rφ(p) ⩾ k + 1. This concludes the proof of the reverse
direction.

Having established both directions, we have shown that Rφ(p) ⩾ k+1 if and
only if Th(X,F) ∪Adm

Tk+1
p is consistent, completing the inductive step.

Our main result in this section establishes the equivalence between finite
Littlestone dimension and finite Shelah 2-rank. The original paper by Bhaskar
[Bha21] doesn’t give a direct proof, so we will give it in full, bringing together
the arguments.

To quantify the growth of the shatter function ρ(m) (see Definition 2.7),
we introduce the intermediate concept of thicket density. This density is
defined as the least exponent bounding the growth rate of ρ(m), serving as a
crucial link between finite and infinite structures.

Definition 2.21 (Definition 4.5, [Bha21]) Let ρ(m) be the thicket shat-
ter function of (X,F), as defined in Definition 2.7. The thicket density of
(X,F), denoted by dens(X,F), is defined as inf{c ∈ R : ρ(m) ∈ O(mc)}.

If ρ(m) ∈ O(mc) for all c ∈ R then dens(X,F) = −∞ and if ρ(m) ̸∈ O(mc)
for all c ∈ R then dens(X,F) =∞.

The key challenge lies in transitioning from the inadmissibility of the infi-
nite tree Tk to the inadmissibility of the finite tree Bk. While it’s straightfor-
ward to show that admitting Tk implies admitting Bk, the reverse implication
requires careful analysis of asymptotic behavior. Thicket density allows us to
bridge this gap effectively.

Littlestone dimension Thicket density Shelah 2-rank
Admissibility of finite
tree Bk

Rate of asymptotic
growth

Admissibility of infinite
tree Tk

The main challenge arises from the fact that Tk can be very deep and
unbalanced, potentially having any finite number of leaves. Consequently,
finding one admissible embedding of Bk in Tk doesn’t guarantee that it will
fully label Tk. Thicket density provides a way to overcome this obstacle by an-
alyzing the asymptotic growth rate of admissible labelings, thereby connecting
the finite structure of Bk to the infinite structure of Tk.
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The original proof goes through for thicket density, briefly mentioning
at the end that in case of Littlestone dimension, density and dimension are
equivalent as N ∪ {∞,−∞}-valued quantities. We decided to change the
arguments and instead give an “honest” proof, instead bounding Littlestone
dimension by thicket density and thicket density by the Shelah 2-rank.

Theorem 2.4 (Theorem 4.4, [Bha21]) If Rφ(p) < k, then dens(Cφ) < k.

Proof Assume Rφ(p) < k:
• By Theorem 2.3 AdmTk

p is inconsistent with Th(X,F). By compactness
theorem, there exists a finite subtree S of Tk such that AdmS

p is inconsis-
tent with Th(X,F). By discussion in Example 2.16, (X, p(F)) forbids
S. Since Tk has dimension k, S has dimension at most k. Therefore,
(X, p(F)) forbids some finite tree S of dimension k.

We prove that if (X, p(F)) forbids a finite tree S of dimension k, then dens(X, p(F)) <
k. Proof by induction on construction of T :

• Base case: If S has dimension 0, it is the single leaf B0. If (X, p(F))
forbids S, then p(F) must be empty, hence its Littlestone dimension is
−∞ < 0. S of dimension k

S1, S2 of dimension
k1, k2 < k• Inductive step: Suppose S has subtrees S1 and S2 with dimensions

k1 and k2. By the inductive hypothesis, there exist functions f1(n) ∈
O(nk1−1) and f2(n) ∈ O(nk2−1) that serve as upper bounds on the
thicket shatter functions ρ1(n) and ρ2(n) if they forbid S1 or S2 respec-
tively. ρ1 ⩽ f1 ∈ O(nk1−1)

ρ2 ⩽ f2 ∈ O(nk2−1)
ρ ⩽ ρ1 + ρ2– For x ∈ X, let Fx = {A ∈ F : x ∈ A} and Fx = {A ∈ F : x ̸∈ A}

with thicket shatter functions ρx and ρx respectively. ρx, ρx

∗ Let Pi(x) express that (X,Fx) admits Si.
∗ Let Qi(x) express that (X,Fx) admits Si.

– Then (X, p(F)) admits S if and only if:

∃x ∈ X ((P1(x) ∧Q2(x)) ∨ (P2(x) ∧Q1(x)))

– Reasoning propositionally, (X, p(F)) forbids S if and only if

∀x ∈ X(¬P1(x) ∧ ¬P2(x)) ∨ (¬P1(x) ∧ ¬Q1(x))∨
(¬Q2(x) ∧ ¬P2(x)) ∨ (¬Q2(x) ∧ ¬Q1(x))

– By the inductive hypothesis, this implies:

∀x ∈ X(ρx ⩽ f1 ∧ ρx ⩽ f2) ∨ (ρx ⩽ f1 ∧ ρx ⩽ f1)∨
(ρx ⩽ f2 ∧ ρx ⩽ f2) ∨ (ρx ⩽ f1 ∧ ρx ⩽ f2),

where ρx ⩽ f1 abbreviates ∀n < ω : ρx(n) ⩽ f1 ∈ O(nk1−1). Label
the four cases (1)-(4) respectively.
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– We consider two cases.
∗ If (2) and (3) hold, then ρx ⩽ f1 and ρx ⩽ f1, which implies
ρ ⩽ ρx + ρx ⩽ 2f1 ∈ O(nk−1).

∗ If (1) and (4) hold, then reasoning propositionally:

∀x ∈ X ((ρx ⩽ f1 ∧ ρx ⩽ f2) ∨ (ρx ⩽ f1 ∧ ρx ⩽ f2))

⇐⇒ ∀x ∈ X ((ρx ⩽ f1 ∨ ρx ⩽ f1) ∧ (ρx ⩽ f2 ∨ ρx ⩾ f2))

⇐⇒ ∀x ∈ X(ρx ⩽ f1 ∨ ρx ⩽ f1) ∧ ∀x ∈ X(ρx ⩽ f2 ∨ ρx ⩽ f2)

– We claim that for any function g, ∀x ∈ X(ρx ⩽ g∨ρx ⩽ g) implies
ρ ⩽

∫
g, where

∫
g = 1 +

∑
k<n g(k). g ∈ O(np) ⇒

∫
g ∈ O(np+1)

∗ If g ∈ O(np) then
∫
g ∈ O(np+1), since

∑
k<n k

p ∈ O(np+1) by
Faulhaber’s formula.

∗ If k1 = k2 then d = k1 + 1 and ρ would be bounded by
∫
f1 ∈

O(nk1).
∗ If k1 ̸= k2, assume without loss of generality that k1 < k2.

Then ρ would be bounded above by both
∫
f1 and

∫
f2. Then

ρ is bounded by
∫
f1 ∈ O(nk1). (ρ ⩽

∫
f1) ∧ (ρ ⩽

∫
f2)

– To prove the above claim, we show ρ(n) ⩽ (
∫
g)(n) by induction

on n.
∗ For n = 0, ρ(0) ⩽ 1 ⩽ (

∫
g)(0).

∗ For the inductive step, consider the labeled tree T witnessing
ρ(n) and let r be the label of the root. By hypothesis, either
ρr or ρr is bounded above by g.

· Therefore, the number of solutions in one of the subtrees
must be bounded by g(n− 1).

· The number of solutions in the remaining subtree is bounded
by ρ(n− 1), which by induction is at most (

∫
g)(n− 1).

· Therefore, the total number of solutions is at most g(n −
1) + (

∫
g)(n− 1) = (

∫
g)(n).

Theorem 2.5 The following conditions are equivalent for any finite type p:

1) Ldim(Cφ) is finite.

2) Rφ(p) is finite.

Proof

1) =⇒ 2): Assume Rφ(p) =∞. By Theorem 2.3, Th(X,F) is consistent with
AdmTk

p for all k < ω. Therefore there exists a valid labeling αk of
Tk for each k < ω. Since each Tk has dimension k and there exists
an embedding of a perfect binary tree Bk in Tk, F shatters each
Bk by restriction of αk. Therefore, the Littlestone dimension of F
is ∞.
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2) =⇒ 1): By Theorem 2.4, dens(Cφ) is finite. Assume for contradiction that
Ldim(Cφ) =∞, then Cφ shatters Bn for any n ∈ N. By Lemma 2.8,
this implies ρCφ(n) = 2n. By definition, dens(Cφ) = inf{c ∈ R :
ρ(n) ∈ O(nc)}. For any finite real number c, nc grows more slowly
then 2n for sufficiently large n. Therefore, there is no finite c for
which ρCφ ∈ O(nc). This means dens(X,F) = ∞, contradiction.
Therefore Ldim(Cφ) <∞.

The equivalence of Shelah’s 2-rank and Littlestone dimension, illustrates
a profound insight: the combinatorial structure of definable sets in a theory
closely mirrors the learnability of concept classes in online learning. Both
notions, at their core, measure the depth of nested binary choices that can be
made before reaching an inherent limit — be it logical inconsistency or forced
correct prediction.

2.3.2 Shelah 2-rank and stability

In the last section we have shown that formulas with finite Littlestone dimen-
sion have finite Shelah 2-rank. This notion of rank is precisely the dividing
lane between stable and unstable formulas. To better undestand why stability
theory is important, we provide the reader with a historic note on stability
theory and its goals.

Remark 2.22 (Historic note on stability theory) In model theory, a fun-
damental question is how many models a (complete) theory with an infinite
model can have. The Löwenheim-Skolem theorem tells us that every theory
with an infinite model has models of arbitrary infinite cardinality. Leopold Löwenheim, 1915

Albert Thoralf Skolem,
1920

The next question is: for a fixed infinite cardinal κ, how many non-
isomorphic models of cardinality κ can a theory T have? We can consider the
spectrum function I(T, κ) which gives the number of non-isomorphic models
of T of cardinality κ. Note that for any theory T and infinite cardinal κ larger
than the cardinality of the language of T , we have 1 ⩽ I(T, κ) ⩽ 2κ.

A fundamental result of Morley states that if T is a countable theory and
I(T, κ) = 1 for some uncountable κ, then I(T, κ) = 1 for all uncountable
κ. He conjectured that I(T, κ) is non-decreasing for uncountable cardinals.
Saharon Shelah’s deep and extensive work in the exploration and classification
of all possible complete theories can be seen as motivated to a large extent by
Morley’s conjecture intended to generalize Morley’s theorem to a computation
of the possible “spectra” of complete first-order theories. Michael D. Morley, 1965

In the process, he introduced several “dividing lines”, separating theories
that have maximum possible number of models from those whose models can
be described by some “small” invariants (such as dimension in vector spaces).
This classification project was closely related to understanding the behavior
of types in these theories.
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One of the main dividing lines is stability, introduced in his 1969 paper
Stable Theories. His approach was motivated by the idea that “tame” theories
should have “few types”, since types describe the possible behaviors of elements
in models or their elementary extensions. It emerged as a key property of
theories with well-behaved spectrum functions. Saharon Shelah, 1969

In “Stable Theories”, Shelah proved a fundamental trichotomy for complete
theories T (in a countable language):

• For any modelM, the number of types is bounded by |A|+ 2ℵ0 .

• For any modelM, the number of types is strictly greater than |A|+2ℵ0

but bounded by |A|ℵ0 .

• For any infinite λ, there exists a model M with |A| = λ < |S1(A)|,
where S1(A) is the set of types over A.

Shelah called the first two cases “stable”, as the number of types remains
controlled as a function of the cardinality of the parameter set. The third
case represents the “wild” situation, where for any λ we can find a model
that defines more than λ types. The connection between the number of types
and the number of non-isomorphic models is fundamental to stability theory,
since types characterize possible behaviors of elements in models. Many types
suggest many different ways elements can behave across models of a theory.
Moreover, models can be distinguished by the types they realize. A theory
with many types thus potentially allows for many non-isomorphic models,
each of which realizes a different combination of types.

This classification has laid the foundation for modern stability theory,
providing a framework for understanding the complexity of first-order theories
through the behavior of their types. This deep connection between types (local
behavior) and models (global structure) is a key insight of stability theory,
and forms the basis for much of the subsequent work in model theory.

A modern definition of stability is often given in terms of the k-order
property, which originally was part of the Unstable Formula Theorem by
Shelah, see Fig. 3.

Definition 2.23 (Stability)

• a formula φ has the k-order-property if there are k tuples (ai, bi) ∈
Mx ×My, such that |= φ(ai; bj) ⇐⇒ i < j,

• a formula φ has the order property if it has the k-order-property for all
finite k,

• a formula φ is stable if there exists some k such that φ does not have
the k-order-property,

• a theory is stable if it implies that all formulas are stable.
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Figure 3: The original statement of Shelah’s unstable formula theorem as it
appears in [She90].

Remark 2.24 Stability of a formula essentially means that its parameters
cannot be used to define a linear order on arbitrarily large subsets of the
domain. This notion has a natural interpretation in machine learning. The
k-order property for a formula corresponds to the ability of a concept class
to express k different threshold functions. In this context, the Littlestone
dimension of a concept class can be understood as a measure of how many
"threshold-like" concepts the class can contain.

The Shelah 2-rank, denoted as R(x = x, φ, 2) in Shelah’s original formu-
lation, is related to the notion of stability by the Unstable Formula Theorem.
This theorem, as shown in Figure 3, provides several equivalent characteriza-
tions of stability. Of particular interest to us are conditions (1) and (3) from
Shelah’s theorem.

Fact 2.25 (The Unstable Formula Theorem 2.2 in [She90]) For a for-
mula φ, the following properties are equivalent:
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• φ is stable,

• Rφ(p) <∞ for any finite φ-type p.

The proof of this theorem is quite lengthy, and draws from both model
theory and combinatorics, introducing Stone spaces of complete n-types and
going back to Ramsey and Erdős-Makkai theorem (so we omit it). Nonetheless
this theorem allows us to show that stable theories are a subset of NIP theories,
discussed in Section 1.3.

Theorem 2.6 Stable theories are NIP.

Proof Let T be a stable theory. Consider an arbitrary formula φ in T . Since
T is stable, φ is stable. We can establish that φ is NIP through the following
chain of implications:

1) The Shelah 2-rank of φ is finite (Fact 2.25).

2) Finite Shelah 2-rank implies that the concept class Cφ has finite Little-
stone dimension (Theorem 2.5).

2) Finite Littlestone dimension of Cφ implies finite VC dimension of Cφ
(Lemma 2.10).

3) Finite VC dimension of Cφ implies φ is NIP (Theorem 1.7).

Following this chain of implications, we conclude that φ is NIP. As φ was
arbitrary, this holds for all formulas in T , therefore T is NIP.

Remark 2.26 Given a class Cφ, there is a natural bipartite graph Gφ asso-
ciated with any concept class. The node set of Gφ consists of two disjoint
parts: the elements of the input set X and the concepts in Cφ. We associate
each concept f ∈ Cφ with the parameter set bj defining it. The edge relation
in Gφ is then defined by φ. Specifically, there is an edge between ai ∈ X and
bj ∈ Cφ if and only if φ(ai; bj) is true (or f(ai) = 1 if we view it as function in
Cφ). This corresponds to the k-order-property we defined in Definition 2.23.
The Littlestone dimension of Cφ is finite if and only if there exists an upper
bound on the size of any half-graph that appears as an induced subgraph of
Gφ.

We will now examine a number of examples of stable theories. They form
a subclass of NIP theories and, as shown in Section 1.2, every formula φ
in a stable theory has finite VC dimension. Consequently, it defines a PAC
learnable concept class Cφ with finite Littlestone dimension.

The strength of our approach is that it draws on the extensive work of
model theorists over many decades. By linking stability to learnability, we
gain access to a rich collection of examples that are known to be stable and
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thus learnable. Without model theory, direct proof of these properties is very
difficult and intractable.

Our exposition follows Section 5 in [CF19]. For readers interested in a
deeper exploration of these connections, we recommend consulting standard
textbooks on model theory for more detailed treatments.

Example 2.27 The theory of algebraically closed fields (ACF) is formulated
in the ring signature Lr = {+,−, ·, 0, 1}. It consists of the standard field
axioms along with an infinite sequence of axioms, one for each positive integer
n, stating that every polynomial of degree n has a root:

φn = ∀y0 . . . ∀yn−1∃x : xn +
n−1∑
i=0

yix
i = 0.

• ACF can be further specialized to describe fields of specific characteris-
tic:

– For a prime p, ACFp is the theory of algebraically closed fields of
characteristic p. It includes the additional axiom ψp = ∀x : px = 0,
where px denotes x added to itself p times.

– For characteristic 0, ACF0 is the theory of algebraically closed fields
of characteristic 0. It includes the negation of ψp for all primes p,
i.e., ¬ψp = ∃x : px ̸= 0 for every prime p.

Both ACF0 and ACFp admit quantifier elimination. This allows any formula
φ in these theories to be expressed as a quantifier-free formula, equivalent to
a Boolean combination of polynomial equations and inequations.

In the context of learning theory, for any formula φ in ACF, the corre-
sponding concept class Cφ is the solution set of this Boolean combination. In
model-theoretic terms, this is a definable set (with parameters), while alge-
braic geometers refer to it as a constructible set. We can view this set as
a subset of An, where A is any algebraically closed field of the appropriate
characteristic, and n is the number of free variables in φ.

A concrete example of a concept class in this theory is the family of elliptic
curves over the complex numbers, defined by the formula φ(x, y; a, b) = y2 =
x3 + ax+ b, where a and b are parameters and x and y are variables. Given
a set of points in C, where each point is labeled based on whether it lies on a
target elliptic curve, we can learn an approximation of that curve with high
probability. The PAC learning guarantee ensures that with high probability,
our learned curve will correctly classify most new points drawn from the same
distribution as our training data.

Example 2.28 The second example is related to differential Galois theory.
The theory of differentially closed fields in characteristic 0 (DCF0) is formu-
lated in the ring signature Lr together with a unary function symbol D dor
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the derivation. DCF0 consists of the axioms for ACF0, along with two axioms
stating that D is an additive homomorphism satisfying the product rule and
one additional axiom:

• ∀x, y : yD(x+ y) = D(x) +D(y)

• ∀x, y : yD(xy) = xD(y) + yD(x)

• For any non-constant differential polynomials p1(x) and p2(x) of order
n1 > n2 there is an x such that f(x) = 0 and g(x) ̸= 0.

This last axiom is particularly important as it ensures that every consistent
system of differential equations has a solution in the field. DCF0 admits
quantifier elimination, allowing any formula φ in this theory to be expressed
as a quantifier-free formula, equivalent to a Boolean combination of differential
polynomial equations and inequations.

A concrete example of a concept class in this theory is the family of so-
lutions to linear differential equations, defined by the formula φ(y; a, b) =
D(y) = ay + b, where a and b are parameters and y is a variable. Given a
set of points in a differential field (e.g., the field of germs of meromorphic
functions), where each point is labeled based on whether it satisfies a target
linear differential equation, we can learn an approximation of that equation
with high probability.

Example 2.29 The third example comes from group theory. The elementary
theory of a non-abelian free group Tfg, is formulated in the group signature
Lg = {·, −1, 1} and was shown to be stable by Zlil Sela in 2006. This theory
cannot be axiomatized by first-order axioms, since the ultraproduct of free
groups is not free. While this theory does not admit quantifier elimination,
any formula in the language of groups is, modulo the theory of the free group,
equivalent to a ∀∃-formula.

A concrete example of a concept class in this theory could be the set of
elements satisfying a certain word equation. For instance, we might consider
φ(x; a, b) = x = aba−1b−1, where a and b are parameters and x is a variable.
Given a set of elements in a free group, the stability of the theory guarantees
that we can PAC learn the parameters a and b in this formula.
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3 Further Research

In this thesis, we’ve proven the equivalence between finite VC dimension and
NIP theories, finite Littlestone dimension and stable theories. This road opens
up multiple ways to build upon these equivalences.

• The reliance of both the Littlestone dimension and the VC dimension
on shatter functions, which are themselves based on different forms of
the Sauer-Shelah lemma, raises a question: Is there a unifying principle
that encompasses both concepts? arXiv:2203.12211v2, 2022This question is partially answered
by Roland Walker in paper “Tree Dimension and the Sauer-Shelah Di-
chotomy” by defining a new tree dimension invariant called leveled tree
dimension to measure the complexity of leaf sets in binary trees.

• The generalization to higher-arity trees has been explored by Hunter
Chase and James Freitag in their paper “Model theory and combina-
torics of banned sequences”. arXiv:1801.07640, 2018In this work, they study 2s-ary trees and
apply it to the notion of model-theoretic ops-rank introduced by Guing-
ona and Hill. When s = 1, this generalization recovers the original
Shelah’s 2-rank.

• In the same paper, they address a question arising from the relation-
ship between Littlestone dimension and VC dimension. Given that fi-
nite Littlestone dimension implies finite VC dimension, they investigate
whether this stronger condition can lead to strengthening of the funda-
mental theorem of PAC learning. The authors provide a partial answer
to this question by adapting the VC theorem to the context of finite Lit-
tlestone dimension. Their key contribution is showing that under these
stronger assumptions, the VC theorem can be modified to allow for sam-
pled elements to depend on the results of previous samples, in contrast
to the independent sampling required in the standard VC theorem.

• A connection to o-minimality comes from the fact that o-minimal the-
ories are NIP. This can be used to show that if the activation functions
of a neural network are definable in an o-minimal expansion of the real
numbers (such as Ran,exp, which includes analytic and exponential func-
tions), then the hypothesis class computed by the network has finite VC
dimension. This theoretical result has practical implications: it ensures
that, given enough training samples, such neural networks can learn to
approximate any concept to the best possible representation within their
hypothesis class. A comprehensive reference on this topic is the text-
book “Neural Network Learning: Theoretical Foundations” by Anthony
and Bartlett.

• A more recent application of this concept was done by D’Inverno et al.
in their paper “VC dimension of Graph Neural Networks with Pfaffian
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activation functions”. Their work extends this analysis to common GNN
architectures. The authors derive upper bounds on the VC dimension
in terms of key architectural parameters like the number of layers, hid-
den feature size, and input dimension. arXiv:2401.12362v2, 2024They show that for GNNs with
Pfaffian activations, the VC dimension grows as O(p4), where p is the
number of parameters. Theoretical results are supported by experiments
measuring the gap between training and test accuracy as network size
increases.

• The VC dimension is closely related to the concept of compression
schemes. A classic example is compressing rectangles in R2 to just
four points – from an arbitrarily large set of labeled samples, one can
select the four outermost positively labeled points and discard the rest.
This compression retains all necessary information to recreate a labeling
consistent with the full original sample, akin to the notion of sufficient
statistics in probability and statistical theory. Just as sufficient statis-
tics capture all relevant information about a parameter in a probabilistic
model, these compression schemes encapsulate the essential information
needed for learning. The now disproven Warmuth conjecture stated that
every concept class of VC dimension at most d admits a compression
scheme of size at most d. arXiv:1503.06960v2, 2015

arXiv:1811.12471v2, 2018

Moran and Yehudayoff in “Sample compres-
sion schemes for VC classes” proved that there exists a compression
scheme whose size is exponential in the VC dimension, and Pálvölgyi
and Tardos in their paper “Unlabeled Compression Schemes Exceeding
the VC-dimension” disproved this conjecture by constructing an explicit
counterexample.

• The uniform definability of types over finite sets (UDTFS) conjecture is
another important model-theoretic conjecture that was recently proven
by Eshel and Kaplan in their paper “On uniform definability of types
over finite sets for NIP formulas”. arXiv:1904.10336v2, 2020This conjecture states that a formula
φ has the non-independence property (NIP) in a theory T if and only
if it has UDTFS in T . More specifically, UDTFS means that for any
NIP formula φ, there exists another formula φ that can uniformly define
all possible φ-types over any finite set of parameters. What’s particu-
larly interesting about the proof of this conjecture is that it combined
two previously known results from machine learning theory. This is
somewhat unusual, as typically model theory techniques are applied to
machine learning problems rather than the reverse.

• Last but certainly not least, the model theorists strike again. In paper
“The Unstable Formula Theorem revisited via algorithms” Malliaris and
Moran focused on developing a complete algorithmic analog of the Un-
stable Formula Theorem. arXiv:2212.05050v2, 2023It summarizes all previous work on the subject
and unifies it into one common framework. This provides a much clearer
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picture of the connections between model theory and machine learning.
Furthermore, they also propose a new approach to online learning called
probably eventually correct learning (PEC) where the main difference
between PEC and PAC learning is

– Error rate:
∗ PAC learning: The output hypothesis has low (but potentially

non-zero) error with high probability.
∗ PEC learning: The output hypothesis eventually has zero error

(up to measure zero) with probability 1.
– Sample complexity:

∗ PAC learning: Requires a finite sample size to achieve the
desired error/confidence.

∗ PEC learning: Allows the sample size to be unbounded, only
requiring the learner to eventually converge to the correct hy-
pothesis.

– Stability:
∗ PAC learning: No explicit stability requirement on the output

hypotheses.
∗ PEC learning: Requires stable learning in the sense that the

algorithm changes its output hypothesis only a bounded num-
ber of times.

– Algorithm:
∗ PAC learning: No specific canonical algorithm.
∗ PEC learning: The Standard Optimal Algorithm (SOA) is

shown to be a PEC learner for Littlestone classes.
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Deutsche Zusammenfassung / German summary

Die vorliegende Arbeit verfolgt das Ziel, die Zusammenhänge zwischen Mod-
elltheorie und maschinellem Lernen an der Schnittstelle zwischen mathematis-
cher Logik und Informatik zu beschreiben. Als Grundlage wurde der Artikel
“Model Theory and Machine Learning” von Hunter und Chase verwendet,
[CF19].

{Mathematische Logik} {Informatik}⋃ ⋃
{Modelltheorie}

⋂
{Maschinelles Lernen}

Wir konzentrieren uns dabei auf zwei zentrale Themenbereiche: Zum
einen untersuchen wir die Verbindung zwischen PAC-Lernbarkeit und der
NIP-Eigenschaft, zum anderen betrachten wir den Zusammenhang zwischen
Online-Lernbarkeit und Stabilität. Beide Themen haben ihre Wurzeln in der
Kombinatorik, ein Thema, das uns in den Beweisen immer wieder begleiten
wird. Die Arbeit besteht aus zwei Hauptteilen:

Im ersten Teil beweisen wir das fundamentale Theorem der PAC-Lernbarkeit.
Dieses besagt, dass eine Konzeptklasse genau dann PAC-lernbar ist, wenn sie
eine endliche VC-Dimension hat. Auf der modelltheoretischen Seite wird an-
schließend die NIP-Eigenschaft eingeführt und gezeigt, dass Formeln in NIP-
Theorien den Konzeptklassen mit endlicher VC-Dimension entsprechen.

Der zweite Teil widmet sich der Online-Lernbarkeit und der Littlestone-
Dimension als Maß für die Komplexität einer Konzeptklasse. Wir stellen den
Standard-Optimal-Algorithm als optimale Strategie für das Online-Lernen
vor. Auf der modelltheoretischen Seite wird die Äquivalenz von endlicher
Littlestone-Dimension und Shelahs 2-Rang, einem wichtigen Konzept aus
der Modelltheorie, bewiesen. In Folge demonstrieren wir, dass Formeln in
stabilen Theorien den Konzeptklassen mit endlicher Littlestone-Dimension
entsprechen.

endliche VC-Dimension ←→ NIP Theorie⋃ ⋃
endliche Littlestone-Dimension ←→ Stabile Theorie

Abschließend befassen wir uns mit der Stabilitätstheorie und zeigen, dass
stabile Theorien eine Untermenge von NIP-Theorien bilden. Zur Veranschaulichung
präsentieren wir mehrere Beispiele für stabile Theorien. Dazu gehören die
Theorie algebraisch geschlossener Felder, die Theorie differenziell geschlossener
Felder und die elementare Theorie nicht-abelscher freier Gruppen. Diese
Beispiele demonstrieren, wie die Modelltheorie eine Vielzahl konkreter, PAC-
lernbarer Konzeptklassen zum Vorschein bringt.
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